ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffun6 Unicode version

Theorem dffun6 5249
Description: Alternate definition of a function using "at most one" notation. (Contributed by NM, 9-Mar-1995.)
Assertion
Ref Expression
dffun6  |-  ( Fun 
F  <->  ( Rel  F  /\  A. x E* y  x F y ) )
Distinct variable group:    x, y, F

Proof of Theorem dffun6
StepHypRef Expression
1 nfcv 2332 . 2  |-  F/_ x F
2 nfcv 2332 . 2  |-  F/_ y F
31, 2dffun6f 5248 1  |-  ( Fun 
F  <->  ( Rel  F  /\  A. x E* y  x F y ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105   A.wal 1362   E*wmo 2039   class class class wbr 4018   Rel wrel 4649   Fun wfun 5229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-br 4019  df-opab 4080  df-id 4311  df-cnv 4652  df-co 4653  df-fun 5237
This theorem is referenced by:  funmo  5250  dffun7  5262  funcnvsn  5280  funcnv2  5295  svrelfun  5300  fnres  5351  nfunsn  5569  shftfn  10868  dvfgg  14634
  Copyright terms: Public domain W3C validator