ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffun6 Unicode version

Theorem dffun6 5269
Description: Alternate definition of a function using "at most one" notation. (Contributed by NM, 9-Mar-1995.)
Assertion
Ref Expression
dffun6  |-  ( Fun 
F  <->  ( Rel  F  /\  A. x E* y  x F y ) )
Distinct variable group:    x, y, F

Proof of Theorem dffun6
StepHypRef Expression
1 nfcv 2336 . 2  |-  F/_ x F
2 nfcv 2336 . 2  |-  F/_ y F
31, 2dffun6f 5268 1  |-  ( Fun 
F  <->  ( Rel  F  /\  A. x E* y  x F y ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105   A.wal 1362   E*wmo 2043   class class class wbr 4030   Rel wrel 4665   Fun wfun 5249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-opab 4092  df-id 4325  df-cnv 4668  df-co 4669  df-fun 5257
This theorem is referenced by:  funmo  5270  dffun7  5282  funcnvsn  5300  funcnv2  5315  svrelfun  5320  fnres  5371  nfunsn  5590  shftfn  10971  dvfgg  14867
  Copyright terms: Public domain W3C validator