Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rspc2va | Unicode version |
Description: 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 18-Jun-2014.) |
Ref | Expression |
---|---|
rspc2v.1 | |
rspc2v.2 |
Ref | Expression |
---|---|
rspc2va |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspc2v.1 | . . 3 | |
2 | rspc2v.2 | . . 3 | |
3 | 1, 2 | rspc2v 2829 | . 2 |
4 | 3 | imp 123 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1335 wcel 2128 wral 2435 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-v 2714 |
This theorem is referenced by: swopo 4267 ordtri2orexmid 4483 onsucelsucexmid 4490 ordsucunielexmid 4491 ordtri2or2exmid 4531 ontri2orexmidim 4532 isocnv 5762 isotr 5767 off 6045 caofrss 6057 oprssdmm 6120 tridc 6845 fidcenumlemrks 6898 seq3caopr2 10385 seq3distr 10416 isprm6 12026 comet 12941 mulcncf 13033 trilpo 13656 neapmkv 13680 |
Copyright terms: Public domain | W3C validator |