ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspc2va Unicode version

Theorem rspc2va 2921
Description: 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 18-Jun-2014.)
Hypotheses
Ref Expression
rspc2v.1  |-  ( x  =  A  ->  ( ph 
<->  ch ) )
rspc2v.2  |-  ( y  =  B  ->  ( ch 
<->  ps ) )
Assertion
Ref Expression
rspc2va  |-  ( ( ( A  e.  C  /\  B  e.  D
)  /\  A. x  e.  C  A. y  e.  D  ph )  ->  ps )
Distinct variable groups:    x, y, A   
y, B    x, C    x, D, y    ch, x    ps, y
Allowed substitution hints:    ph( x, y)    ps( x)    ch( y)    B( x)    C( y)

Proof of Theorem rspc2va
StepHypRef Expression
1 rspc2v.1 . . 3  |-  ( x  =  A  ->  ( ph 
<->  ch ) )
2 rspc2v.2 . . 3  |-  ( y  =  B  ->  ( ch 
<->  ps ) )
31, 2rspc2v 2920 . 2  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A. x  e.  C  A. y  e.  D  ph  ->  ps ) )
43imp 124 1  |-  ( ( ( A  e.  C  /\  B  e.  D
)  /\  A. x  e.  C  A. y  e.  D  ph )  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   A.wral 2508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801
This theorem is referenced by:  swopo  4397  ordtri2orexmid  4615  onsucelsucexmid  4622  ordsucunielexmid  4623  ordtri2or2exmid  4663  ontri2orexmidim  4664  isocnv  5935  isotr  5940  ovrspc2v  6027  off  6231  caofrss  6250  oprssdmm  6317  tridc  7061  tpfidceq  7092  fidcenumlemrks  7120  seq3caopr2  10715  seqcaopr2g  10716  seq3distr  10754  isprm6  12669  mhmpropd  13499  grpidssd  13609  grpinvssd  13610  dfgrp3mlem  13631  isnsg3  13744  domneq0  14236  comet  15173  mulcncf  15282  trilpo  16411  neapmkv  16436
  Copyright terms: Public domain W3C validator