| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspc2va | Unicode version | ||
| Description: 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| rspc2v.1 |
|
| rspc2v.2 |
|
| Ref | Expression |
|---|---|
| rspc2va |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspc2v.1 |
. . 3
| |
| 2 | rspc2v.2 |
. . 3
| |
| 3 | 1, 2 | rspc2v 2920 |
. 2
|
| 4 | 3 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 |
| This theorem is referenced by: swopo 4397 ordtri2orexmid 4615 onsucelsucexmid 4622 ordsucunielexmid 4623 ordtri2or2exmid 4663 ontri2orexmidim 4664 isocnv 5935 isotr 5940 ovrspc2v 6027 off 6231 caofrss 6250 oprssdmm 6317 tridc 7061 tpfidceq 7092 fidcenumlemrks 7120 seq3caopr2 10715 seqcaopr2g 10716 seq3distr 10754 isprm6 12669 mhmpropd 13499 grpidssd 13609 grpinvssd 13610 dfgrp3mlem 13631 isnsg3 13744 domneq0 14236 comet 15173 mulcncf 15282 trilpo 16411 neapmkv 16436 |
| Copyright terms: Public domain | W3C validator |