| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspc2va | Unicode version | ||
| Description: 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| rspc2v.1 |
|
| rspc2v.2 |
|
| Ref | Expression |
|---|---|
| rspc2va |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspc2v.1 |
. . 3
| |
| 2 | rspc2v.2 |
. . 3
| |
| 3 | 1, 2 | rspc2v 2881 |
. 2
|
| 4 | 3 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 |
| This theorem is referenced by: swopo 4342 ordtri2orexmid 4560 onsucelsucexmid 4567 ordsucunielexmid 4568 ordtri2or2exmid 4608 ontri2orexmidim 4609 isocnv 5861 isotr 5866 ovrspc2v 5951 off 6152 caofrss 6171 oprssdmm 6238 tridc 6969 tpfidceq 7000 fidcenumlemrks 7028 seq3caopr2 10602 seqcaopr2g 10603 seq3distr 10641 isprm6 12340 mhmpropd 13168 grpidssd 13278 grpinvssd 13279 dfgrp3mlem 13300 isnsg3 13413 domneq0 13904 comet 14819 mulcncf 14928 trilpo 15774 neapmkv 15799 |
| Copyright terms: Public domain | W3C validator |