ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspc2va Unicode version

Theorem rspc2va 2891
Description: 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 18-Jun-2014.)
Hypotheses
Ref Expression
rspc2v.1  |-  ( x  =  A  ->  ( ph 
<->  ch ) )
rspc2v.2  |-  ( y  =  B  ->  ( ch 
<->  ps ) )
Assertion
Ref Expression
rspc2va  |-  ( ( ( A  e.  C  /\  B  e.  D
)  /\  A. x  e.  C  A. y  e.  D  ph )  ->  ps )
Distinct variable groups:    x, y, A   
y, B    x, C    x, D, y    ch, x    ps, y
Allowed substitution hints:    ph( x, y)    ps( x)    ch( y)    B( x)    C( y)

Proof of Theorem rspc2va
StepHypRef Expression
1 rspc2v.1 . . 3  |-  ( x  =  A  ->  ( ph 
<->  ch ) )
2 rspc2v.2 . . 3  |-  ( y  =  B  ->  ( ch 
<->  ps ) )
31, 2rspc2v 2890 . 2  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A. x  e.  C  A. y  e.  D  ph  ->  ps ) )
43imp 124 1  |-  ( ( ( A  e.  C  /\  B  e.  D
)  /\  A. x  e.  C  A. y  e.  D  ph )  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   A.wral 2484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-v 2774
This theorem is referenced by:  swopo  4354  ordtri2orexmid  4572  onsucelsucexmid  4579  ordsucunielexmid  4580  ordtri2or2exmid  4620  ontri2orexmidim  4621  isocnv  5882  isotr  5887  ovrspc2v  5972  off  6173  caofrss  6192  oprssdmm  6259  tridc  6998  tpfidceq  7029  fidcenumlemrks  7057  seq3caopr2  10640  seqcaopr2g  10641  seq3distr  10679  isprm6  12502  mhmpropd  13331  grpidssd  13441  grpinvssd  13442  dfgrp3mlem  13463  isnsg3  13576  domneq0  14067  comet  15004  mulcncf  15113  trilpo  16019  neapmkv  16044
  Copyright terms: Public domain W3C validator