ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfwlpoimlemginf Unicode version

Theorem nninfwlpoimlemginf 7156
Description: Lemma for nninfwlpoim 7158. (Contributed by Jim Kingdon, 8-Dec-2024.)
Hypotheses
Ref Expression
nninfwlpoimlemg.f  |-  ( ph  ->  F : om --> 2o )
nninfwlpoimlemg.g  |-  G  =  ( i  e.  om  |->  if ( E. x  e. 
suc  i ( F `
 x )  =  (/) ,  (/) ,  1o ) )
Assertion
Ref Expression
nninfwlpoimlemginf  |-  ( ph  ->  ( G  =  ( i  e.  om  |->  1o )  <->  A. n  e.  om  ( F `  n )  =  1o ) )
Distinct variable groups:    i, F, n, x    n, G, x    ph, i, x, n
Allowed substitution hint:    G( i)

Proof of Theorem nninfwlpoimlemginf
StepHypRef Expression
1 nninfwlpoimlemg.g . . . . . . . 8  |-  G  =  ( i  e.  om  |->  if ( E. x  e. 
suc  i ( F `
 x )  =  (/) ,  (/) ,  1o ) )
2 suceq 4388 . . . . . . . . . 10  |-  ( i  =  n  ->  suc  i  =  suc  n )
32rexeqdv 2673 . . . . . . . . 9  |-  ( i  =  n  ->  ( E. x  e.  suc  i ( F `  x )  =  (/)  <->  E. x  e.  suc  n ( F `  x )  =  (/) ) )
43ifbid 3548 . . . . . . . 8  |-  ( i  =  n  ->  if ( E. x  e.  suc  i ( F `  x )  =  (/) ,  (/) ,  1o )  =  if ( E. x  e.  suc  n ( F `
 x )  =  (/) ,  (/) ,  1o ) )
5 simpr 109 . . . . . . . 8  |-  ( ( ( ph  /\  G  =  ( i  e. 
om  |->  1o ) )  /\  n  e.  om )  ->  n  e.  om )
6 0lt2o 6424 . . . . . . . . . 10  |-  (/)  e.  2o
76a1i 9 . . . . . . . . 9  |-  ( ( ( ph  /\  G  =  ( i  e. 
om  |->  1o ) )  /\  n  e.  om )  ->  (/)  e.  2o )
8 1lt2o 6425 . . . . . . . . . 10  |-  1o  e.  2o
98a1i 9 . . . . . . . . 9  |-  ( ( ( ph  /\  G  =  ( i  e. 
om  |->  1o ) )  /\  n  e.  om )  ->  1o  e.  2o )
10 peano2 4580 . . . . . . . . . . . 12  |-  ( n  e.  om  ->  suc  n  e.  om )
1110adantl 275 . . . . . . . . . . 11  |-  ( ( ( ph  /\  G  =  ( i  e. 
om  |->  1o ) )  /\  n  e.  om )  ->  suc  n  e.  om )
12 nnfi 6854 . . . . . . . . . . 11  |-  ( suc  n  e.  om  ->  suc  n  e.  Fin )
1311, 12syl 14 . . . . . . . . . 10  |-  ( ( ( ph  /\  G  =  ( i  e. 
om  |->  1o ) )  /\  n  e.  om )  ->  suc  n  e.  Fin )
14 2ssom 6507 . . . . . . . . . . . . 13  |-  2o  C_  om
15 nninfwlpoimlemg.f . . . . . . . . . . . . . . 15  |-  ( ph  ->  F : om --> 2o )
1615ad3antrrr 490 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  G  =  ( i  e.  om  |->  1o ) )  /\  n  e.  om )  /\  x  e.  suc  n )  ->  F : om --> 2o )
17 simpr 109 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  G  =  ( i  e.  om  |->  1o ) )  /\  n  e.  om )  /\  x  e.  suc  n )  ->  x  e.  suc  n )
1811adantr 274 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  G  =  ( i  e.  om  |->  1o ) )  /\  n  e.  om )  /\  x  e.  suc  n )  ->  suc  n  e.  om )
19 elnn 4591 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  suc  n  /\  suc  n  e.  om )  ->  x  e.  om )
2017, 18, 19syl2anc 409 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  G  =  ( i  e.  om  |->  1o ) )  /\  n  e.  om )  /\  x  e.  suc  n )  ->  x  e.  om )
2116, 20ffvelrnd 5636 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  G  =  ( i  e.  om  |->  1o ) )  /\  n  e.  om )  /\  x  e.  suc  n )  ->  ( F `  x )  e.  2o )
2214, 21sselid 3146 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  G  =  ( i  e.  om  |->  1o ) )  /\  n  e.  om )  /\  x  e.  suc  n )  ->  ( F `  x )  e.  om )
23 peano1 4579 . . . . . . . . . . . . 13  |-  (/)  e.  om
2423a1i 9 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  G  =  ( i  e.  om  |->  1o ) )  /\  n  e.  om )  /\  x  e.  suc  n )  ->  (/)  e.  om )
25 nndceq 6482 . . . . . . . . . . . 12  |-  ( ( ( F `  x
)  e.  om  /\  (/) 
e.  om )  -> DECID  ( F `  x
)  =  (/) )
2622, 24, 25syl2anc 409 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  G  =  ( i  e.  om  |->  1o ) )  /\  n  e.  om )  /\  x  e.  suc  n )  -> DECID  ( F `  x
)  =  (/) )
2726ralrimiva 2544 . . . . . . . . . 10  |-  ( ( ( ph  /\  G  =  ( i  e. 
om  |->  1o ) )  /\  n  e.  om )  ->  A. x  e.  suc  nDECID  ( F `  x )  =  (/) )
28 finexdc 6884 . . . . . . . . . 10  |-  ( ( suc  n  e.  Fin  /\ 
A. x  e.  suc  nDECID  ( F `  x )  =  (/) )  -> DECID  E. x  e.  suc  n ( F `  x )  =  (/) )
2913, 27, 28syl2anc 409 . . . . . . . . 9  |-  ( ( ( ph  /\  G  =  ( i  e. 
om  |->  1o ) )  /\  n  e.  om )  -> DECID  E. x  e.  suc  n ( F `  x )  =  (/) )
307, 9, 29ifcldcd 3562 . . . . . . . 8  |-  ( ( ( ph  /\  G  =  ( i  e. 
om  |->  1o ) )  /\  n  e.  om )  ->  if ( E. x  e.  suc  n
( F `  x
)  =  (/) ,  (/) ,  1o )  e.  2o )
311, 4, 5, 30fvmptd3 5593 . . . . . . 7  |-  ( ( ( ph  /\  G  =  ( i  e. 
om  |->  1o ) )  /\  n  e.  om )  ->  ( G `  n )  =  if ( E. x  e. 
suc  n ( F `
 x )  =  (/) ,  (/) ,  1o ) )
3231adantr 274 . . . . . 6  |-  ( ( ( ( ph  /\  G  =  ( i  e.  om  |->  1o ) )  /\  n  e.  om )  /\  ( F `  n )  =  (/) )  ->  ( G `  n )  =  if ( E. x  e. 
suc  n ( F `
 x )  =  (/) ,  (/) ,  1o ) )
33 vex 2734 . . . . . . . . . 10  |-  n  e. 
_V
3433sucid 4403 . . . . . . . . 9  |-  n  e. 
suc  n
3534a1i 9 . . . . . . . 8  |-  ( ( ( ( ph  /\  G  =  ( i  e.  om  |->  1o ) )  /\  n  e.  om )  /\  ( F `  n )  =  (/) )  ->  n  e.  suc  n )
36 simpr 109 . . . . . . . 8  |-  ( ( ( ( ph  /\  G  =  ( i  e.  om  |->  1o ) )  /\  n  e.  om )  /\  ( F `  n )  =  (/) )  ->  ( F `  n )  =  (/) )
37 fveqeq2 5508 . . . . . . . . 9  |-  ( x  =  n  ->  (
( F `  x
)  =  (/)  <->  ( F `  n )  =  (/) ) )
3837rspcev 2835 . . . . . . . 8  |-  ( ( n  e.  suc  n  /\  ( F `  n
)  =  (/) )  ->  E. x  e.  suc  n ( F `  x )  =  (/) )
3935, 36, 38syl2anc 409 . . . . . . 7  |-  ( ( ( ( ph  /\  G  =  ( i  e.  om  |->  1o ) )  /\  n  e.  om )  /\  ( F `  n )  =  (/) )  ->  E. x  e.  suc  n ( F `  x )  =  (/) )
4039iftrued 3534 . . . . . 6  |-  ( ( ( ( ph  /\  G  =  ( i  e.  om  |->  1o ) )  /\  n  e.  om )  /\  ( F `  n )  =  (/) )  ->  if ( E. x  e.  suc  n
( F `  x
)  =  (/) ,  (/) ,  1o )  =  (/) )
4132, 40eqtrd 2204 . . . . 5  |-  ( ( ( ( ph  /\  G  =  ( i  e.  om  |->  1o ) )  /\  n  e.  om )  /\  ( F `  n )  =  (/) )  ->  ( G `  n )  =  (/) )
42 1n0 6415 . . . . . . 7  |-  1o  =/=  (/)
4342neii 2343 . . . . . 6  |-  -.  1o  =  (/)
44 simpllr 530 . . . . . . . . 9  |-  ( ( ( ( ph  /\  G  =  ( i  e.  om  |->  1o ) )  /\  n  e.  om )  /\  ( F `  n )  =  (/) )  ->  G  =  ( i  e.  om  |->  1o ) )
4544fveq1d 5501 . . . . . . . 8  |-  ( ( ( ( ph  /\  G  =  ( i  e.  om  |->  1o ) )  /\  n  e.  om )  /\  ( F `  n )  =  (/) )  ->  ( G `  n )  =  ( ( i  e.  om  |->  1o ) `  n ) )
46 eqid 2171 . . . . . . . . 9  |-  ( i  e.  om  |->  1o )  =  ( i  e. 
om  |->  1o )
47 eqidd 2172 . . . . . . . . 9  |-  ( i  =  n  ->  1o  =  1o )
485adantr 274 . . . . . . . . 9  |-  ( ( ( ( ph  /\  G  =  ( i  e.  om  |->  1o ) )  /\  n  e.  om )  /\  ( F `  n )  =  (/) )  ->  n  e.  om )
498a1i 9 . . . . . . . . 9  |-  ( ( ( ( ph  /\  G  =  ( i  e.  om  |->  1o ) )  /\  n  e.  om )  /\  ( F `  n )  =  (/) )  ->  1o  e.  2o )
5046, 47, 48, 49fvmptd3 5593 . . . . . . . 8  |-  ( ( ( ( ph  /\  G  =  ( i  e.  om  |->  1o ) )  /\  n  e.  om )  /\  ( F `  n )  =  (/) )  ->  ( ( i  e.  om  |->  1o ) `
 n )  =  1o )
5145, 50eqtrd 2204 . . . . . . 7  |-  ( ( ( ( ph  /\  G  =  ( i  e.  om  |->  1o ) )  /\  n  e.  om )  /\  ( F `  n )  =  (/) )  ->  ( G `  n )  =  1o )
5251eqeq1d 2180 . . . . . 6  |-  ( ( ( ( ph  /\  G  =  ( i  e.  om  |->  1o ) )  /\  n  e.  om )  /\  ( F `  n )  =  (/) )  ->  ( ( G `
 n )  =  (/) 
<->  1o  =  (/) ) )
5343, 52mtbiri 671 . . . . 5  |-  ( ( ( ( ph  /\  G  =  ( i  e.  om  |->  1o ) )  /\  n  e.  om )  /\  ( F `  n )  =  (/) )  ->  -.  ( G `  n )  =  (/) )
5441, 53pm2.65da 657 . . . 4  |-  ( ( ( ph  /\  G  =  ( i  e. 
om  |->  1o ) )  /\  n  e.  om )  ->  -.  ( F `  n )  =  (/) )
5515adantr 274 . . . . . . 7  |-  ( (
ph  /\  G  =  ( i  e.  om  |->  1o ) )  ->  F : om --> 2o )
5655ffvelcdmda 5635 . . . . . 6  |-  ( ( ( ph  /\  G  =  ( i  e. 
om  |->  1o ) )  /\  n  e.  om )  ->  ( F `  n )  e.  2o )
57 elpri 3607 . . . . . . 7  |-  ( ( F `  n )  e.  { (/) ,  1o }  ->  ( ( F `
 n )  =  (/)  \/  ( F `  n )  =  1o ) )
58 df2o3 6413 . . . . . . 7  |-  2o  =  { (/) ,  1o }
5957, 58eleq2s 2266 . . . . . 6  |-  ( ( F `  n )  e.  2o  ->  (
( F `  n
)  =  (/)  \/  ( F `  n )  =  1o ) )
6056, 59syl 14 . . . . 5  |-  ( ( ( ph  /\  G  =  ( i  e. 
om  |->  1o ) )  /\  n  e.  om )  ->  ( ( F `
 n )  =  (/)  \/  ( F `  n )  =  1o ) )
6160orcomd 725 . . . 4  |-  ( ( ( ph  /\  G  =  ( i  e. 
om  |->  1o ) )  /\  n  e.  om )  ->  ( ( F `
 n )  =  1o  \/  ( F `
 n )  =  (/) ) )
6254, 61ecased 1345 . . 3  |-  ( ( ( ph  /\  G  =  ( i  e. 
om  |->  1o ) )  /\  n  e.  om )  ->  ( F `  n )  =  1o )
6362ralrimiva 2544 . 2  |-  ( (
ph  /\  G  =  ( i  e.  om  |->  1o ) )  ->  A. n  e.  om  ( F `  n )  =  1o )
64 eqeq1 2178 . . . . . . . . . . 11  |-  ( ( F `  n )  =  1o  ->  (
( F `  n
)  =  (/)  <->  1o  =  (/) ) )
6543, 64mtbiri 671 . . . . . . . . . 10  |-  ( ( F `  n )  =  1o  ->  -.  ( F `  n )  =  (/) )
6665ralimi 2534 . . . . . . . . 9  |-  ( A. n  e.  om  ( F `  n )  =  1o  ->  A. n  e.  om  -.  ( F `
 n )  =  (/) )
67 ralnex 2459 . . . . . . . . 9  |-  ( A. n  e.  om  -.  ( F `  n )  =  (/)  <->  -.  E. n  e.  om  ( F `  n )  =  (/) )
6866, 67sylib 121 . . . . . . . 8  |-  ( A. n  e.  om  ( F `  n )  =  1o  ->  -.  E. n  e.  om  ( F `  n )  =  (/) )
69 fveqeq2 5508 . . . . . . . . 9  |-  ( n  =  x  ->  (
( F `  n
)  =  (/)  <->  ( F `  x )  =  (/) ) )
7069cbvrexv 2698 . . . . . . . 8  |-  ( E. n  e.  om  ( F `  n )  =  (/)  <->  E. x  e.  om  ( F `  x )  =  (/) )
7168, 70sylnib 672 . . . . . . 7  |-  ( A. n  e.  om  ( F `  n )  =  1o  ->  -.  E. x  e.  om  ( F `  x )  =  (/) )
7271ad2antlr 487 . . . . . 6  |-  ( ( ( ph  /\  A. n  e.  om  ( F `  n )  =  1o )  /\  i  e.  om )  ->  -.  E. x  e.  om  ( F `  x )  =  (/) )
73 peano2 4580 . . . . . . . 8  |-  ( i  e.  om  ->  suc  i  e.  om )
7473adantl 275 . . . . . . 7  |-  ( ( ( ph  /\  A. n  e.  om  ( F `  n )  =  1o )  /\  i  e.  om )  ->  suc  i  e.  om )
75 elomssom 4590 . . . . . . 7  |-  ( suc  i  e.  om  ->  suc  i  C_  om )
76 ssrexv 3213 . . . . . . 7  |-  ( suc  i  C_  om  ->  ( E. x  e.  suc  i ( F `  x )  =  (/)  ->  E. x  e.  om  ( F `  x )  =  (/) ) )
7774, 75, 763syl 17 . . . . . 6  |-  ( ( ( ph  /\  A. n  e.  om  ( F `  n )  =  1o )  /\  i  e.  om )  ->  ( E. x  e.  suc  i ( F `  x )  =  (/)  ->  E. x  e.  om  ( F `  x )  =  (/) ) )
7872, 77mtod 659 . . . . 5  |-  ( ( ( ph  /\  A. n  e.  om  ( F `  n )  =  1o )  /\  i  e.  om )  ->  -.  E. x  e.  suc  i
( F `  x
)  =  (/) )
7978iffalsed 3537 . . . 4  |-  ( ( ( ph  /\  A. n  e.  om  ( F `  n )  =  1o )  /\  i  e.  om )  ->  if ( E. x  e.  suc  i ( F `  x )  =  (/) ,  (/) ,  1o )  =  1o )
8079mpteq2dva 4080 . . 3  |-  ( (
ph  /\  A. n  e.  om  ( F `  n )  =  1o )  ->  ( i  e.  om  |->  if ( E. x  e.  suc  i
( F `  x
)  =  (/) ,  (/) ,  1o ) )  =  ( i  e.  om  |->  1o ) )
811, 80eqtrid 2216 . 2  |-  ( (
ph  /\  A. n  e.  om  ( F `  n )  =  1o )  ->  G  =  ( i  e.  om  |->  1o ) )
8263, 81impbida 592 1  |-  ( ph  ->  ( G  =  ( i  e.  om  |->  1o )  <->  A. n  e.  om  ( F `  n )  =  1o ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 704  DECID wdc 830    = wceq 1349    e. wcel 2142   A.wral 2449   E.wrex 2450    C_ wss 3122   (/)c0 3415   ifcif 3527   {cpr 3585    |-> cmpt 4051   suc csuc 4351   omcom 4575   -->wf 5196   ` cfv 5200   1oc1o 6392   2oc2o 6393   Fincfn 6722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 610  ax-in2 611  ax-io 705  ax-5 1441  ax-7 1442  ax-gen 1443  ax-ie1 1487  ax-ie2 1488  ax-8 1498  ax-10 1499  ax-11 1500  ax-i12 1501  ax-bndl 1503  ax-4 1504  ax-17 1520  ax-i9 1524  ax-ial 1528  ax-i5r 1529  ax-13 2144  ax-14 2145  ax-ext 2153  ax-coll 4105  ax-sep 4108  ax-nul 4116  ax-pow 4161  ax-pr 4195  ax-un 4419  ax-setind 4522  ax-iinf 4573
This theorem depends on definitions:  df-bi 116  df-dc 831  df-3or 975  df-3an 976  df-tru 1352  df-fal 1355  df-nf 1455  df-sb 1757  df-eu 2023  df-mo 2024  df-clab 2158  df-cleq 2164  df-clel 2167  df-nfc 2302  df-ne 2342  df-ral 2454  df-rex 2455  df-reu 2456  df-rab 2458  df-v 2733  df-sbc 2957  df-csb 3051  df-dif 3124  df-un 3126  df-in 3128  df-ss 3135  df-nul 3416  df-if 3528  df-pw 3569  df-sn 3590  df-pr 3591  df-op 3593  df-uni 3798  df-int 3833  df-iun 3876  df-br 3991  df-opab 4052  df-mpt 4053  df-tr 4089  df-id 4279  df-iord 4352  df-on 4354  df-suc 4357  df-iom 4576  df-xp 4618  df-rel 4619  df-cnv 4620  df-co 4621  df-dm 4622  df-rn 4623  df-res 4624  df-ima 4625  df-iota 5162  df-fun 5202  df-fn 5203  df-f 5204  df-f1 5205  df-fo 5206  df-f1o 5207  df-fv 5208  df-1o 6399  df-2o 6400  df-er 6517  df-en 6723  df-fin 6725
This theorem is referenced by:  nninfwlpoimlemdc  7157
  Copyright terms: Public domain W3C validator