Proof of Theorem nninfwlpoimlemginf
| Step | Hyp | Ref
| Expression |
| 1 | | nninfwlpoimlemg.g |
. . . . . . . 8
              |
| 2 | | suceq 4437 |
. . . . . . . . . 10

  |
| 3 | 2 | rexeqdv 2700 |
. . . . . . . . 9
  
     
        |
| 4 | 3 | ifbid 3582 |
. . . . . . . 8
                         |
| 5 | | simpr 110 |
. . . . . . . 8
         |
| 6 | | 0lt2o 6499 |
. . . . . . . . . 10
 |
| 7 | 6 | a1i 9 |
. . . . . . . . 9
         |
| 8 | | 1lt2o 6500 |
. . . . . . . . . 10
 |
| 9 | 8 | a1i 9 |
. . . . . . . . 9
         |
| 10 | | peano2 4631 |
. . . . . . . . . . . 12

  |
| 11 | 10 | adantl 277 |
. . . . . . . . . . 11
      
  |
| 12 | | nnfi 6933 |
. . . . . . . . . . 11
   |
| 13 | 11, 12 | syl 14 |
. . . . . . . . . 10
      
  |
| 14 | | 2ssom 6582 |
. . . . . . . . . . . . 13
 |
| 15 | | nninfwlpoimlemg.f |
. . . . . . . . . . . . . . 15
       |
| 16 | 15 | ad3antrrr 492 |
. . . . . . . . . . . . . 14
   
           |
| 17 | | simpr 110 |
. . . . . . . . . . . . . . 15
   
       |
| 18 | 11 | adantr 276 |
. . . . . . . . . . . . . . 15
   
    
  |
| 19 | | elnn 4642 |
. . . . . . . . . . . . . . 15
     |
| 20 | 17, 18, 19 | syl2anc 411 |
. . . . . . . . . . . . . 14
   
       |
| 21 | 16, 20 | ffvelcdmd 5698 |
. . . . . . . . . . . . 13
   
           |
| 22 | 14, 21 | sselid 3181 |
. . . . . . . . . . . 12
   
           |
| 23 | | peano1 4630 |
. . . . . . . . . . . . 13
 |
| 24 | 23 | a1i 9 |
. . . . . . . . . . . 12
   
       |
| 25 | | nndceq 6557 |
. . . . . . . . . . . 12
      
DECID       |
| 26 | 22, 24, 25 | syl2anc 411 |
. . . . . . . . . . 11
   
    
DECID       |
| 27 | 26 | ralrimiva 2570 |
. . . . . . . . . 10
        DECID       |
| 28 | | finexdc 6963 |
. . . . . . . . . 10
   DECID     
DECID         |
| 29 | 13, 27, 28 | syl2anc 411 |
. . . . . . . . 9
       DECID 
       |
| 30 | 7, 9, 29 | ifcldcd 3597 |
. . . . . . . 8
                    |
| 31 | 1, 4, 5, 30 | fvmptd3 5655 |
. . . . . . 7
                        |
| 32 | 31 | adantr 276 |
. . . . . 6
   
                          |
| 33 | | vex 2766 |
. . . . . . . . . 10
 |
| 34 | 33 | sucid 4452 |
. . . . . . . . 9
 |
| 35 | 34 | a1i 9 |
. . . . . . . 8
   
           |
| 36 | | simpr 110 |
. . . . . . . 8
   
               |
| 37 | | fveqeq2 5567 |
. . . . . . . . 9
     
       |
| 38 | 37 | rspcev 2868 |
. . . . . . . 8
       
       |
| 39 | 35, 36, 38 | syl2anc 411 |
. . . . . . 7
   
                 |
| 40 | 39 | iftrued 3568 |
. . . . . 6
   
                      |
| 41 | 32, 40 | eqtrd 2229 |
. . . . 5
   
               |
| 42 | | 1n0 6490 |
. . . . . . 7
 |
| 43 | 42 | neii 2369 |
. . . . . 6
 |
| 44 | | simpllr 534 |
. . . . . . . . 9
   
             |
| 45 | 44 | fveq1d 5560 |
. . . . . . . 8
   
                     |
| 46 | | eqid 2196 |
. . . . . . . . 9
     |
| 47 | | eqidd 2197 |
. . . . . . . . 9
   |
| 48 | 5 | adantr 276 |
. . . . . . . . 9
   
           |
| 49 | 8 | a1i 9 |
. . . . . . . . 9
   
           |
| 50 | 46, 47, 48, 49 | fvmptd3 5655 |
. . . . . . . 8
   
                 |
| 51 | 45, 50 | eqtrd 2229 |
. . . . . . 7
   
               |
| 52 | 51 | eqeq1d 2205 |
. . . . . 6
   
                 |
| 53 | 43, 52 | mtbiri 676 |
. . . . 5
   
        
      |
| 54 | 41, 53 | pm2.65da 662 |
. . . 4
      
      |
| 55 | 15 | adantr 276 |
. . . . . . 7
 
         |
| 56 | 55 | ffvelcdmda 5697 |
. . . . . 6
             |
| 57 | | elpri 3645 |
. . . . . . 7
                    |
| 58 | | df2o3 6488 |
. . . . . . 7
    |
| 59 | 57, 58 | eleq2s 2291 |
. . . . . 6
                 |
| 60 | 56, 59 | syl 14 |
. . . . 5
                   |
| 61 | 60 | orcomd 730 |
. . . 4
                   |
| 62 | 54, 61 | ecased 1360 |
. . 3
             |
| 63 | 62 | ralrimiva 2570 |
. 2
 
          |
| 64 | | eqeq1 2203 |
. . . . . . . . . . 11
         
   |
| 65 | 43, 64 | mtbiri 676 |
. . . . . . . . . 10
           |
| 66 | 65 | ralimi 2560 |
. . . . . . . . 9
 
   
       |
| 67 | | ralnex 2485 |
. . . . . . . . 9
 
   
       |
| 68 | 66, 67 | sylib 122 |
. . . . . . . 8
 
   

      |
| 69 | | fveqeq2 5567 |
. . . . . . . . 9
     
       |
| 70 | 69 | cbvrexv 2730 |
. . . . . . . 8
             |
| 71 | 68, 70 | sylnib 677 |
. . . . . . 7
 
   

      |
| 72 | 71 | ad2antlr 489 |
. . . . . 6
   
             |
| 73 | | peano2 4631 |
. . . . . . . 8

  |
| 74 | 73 | adantl 277 |
. . . . . . 7
   
     
  |
| 75 | | elomssom 4641 |
. . . . . . 7

  |
| 76 | | ssrexv 3248 |
. . . . . . 7

               |
| 77 | 74, 75, 76 | 3syl 17 |
. . . . . 6
   
       
             |
| 78 | 72, 77 | mtod 664 |
. . . . 5
   
              |
| 79 | 78 | iffalsed 3571 |
. . . 4
   
                   |
| 80 | 79 | mpteq2dva 4123 |
. . 3
 
     
                 |
| 81 | 1, 80 | eqtrid 2241 |
. 2
 
     
    |
| 82 | 63, 81 | impbida 596 |
1
            |