ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfwlpoimlemginf Unicode version

Theorem nninfwlpoimlemginf 7343
Description: Lemma for nninfwlpoim 7346. (Contributed by Jim Kingdon, 8-Dec-2024.)
Hypotheses
Ref Expression
nninfwlpoimlemg.f  |-  ( ph  ->  F : om --> 2o )
nninfwlpoimlemg.g  |-  G  =  ( i  e.  om  |->  if ( E. x  e. 
suc  i ( F `
 x )  =  (/) ,  (/) ,  1o ) )
Assertion
Ref Expression
nninfwlpoimlemginf  |-  ( ph  ->  ( G  =  ( i  e.  om  |->  1o )  <->  A. n  e.  om  ( F `  n )  =  1o ) )
Distinct variable groups:    i, F, n, x    n, G, x    ph, i, x, n
Allowed substitution hint:    G( i)

Proof of Theorem nninfwlpoimlemginf
StepHypRef Expression
1 nninfwlpoimlemg.g . . . . . . . 8  |-  G  =  ( i  e.  om  |->  if ( E. x  e. 
suc  i ( F `
 x )  =  (/) ,  (/) ,  1o ) )
2 suceq 4493 . . . . . . . . . 10  |-  ( i  =  n  ->  suc  i  =  suc  n )
32rexeqdv 2735 . . . . . . . . 9  |-  ( i  =  n  ->  ( E. x  e.  suc  i ( F `  x )  =  (/)  <->  E. x  e.  suc  n ( F `  x )  =  (/) ) )
43ifbid 3624 . . . . . . . 8  |-  ( i  =  n  ->  if ( E. x  e.  suc  i ( F `  x )  =  (/) ,  (/) ,  1o )  =  if ( E. x  e.  suc  n ( F `
 x )  =  (/) ,  (/) ,  1o ) )
5 simpr 110 . . . . . . . 8  |-  ( ( ( ph  /\  G  =  ( i  e. 
om  |->  1o ) )  /\  n  e.  om )  ->  n  e.  om )
6 0lt2o 6587 . . . . . . . . . 10  |-  (/)  e.  2o
76a1i 9 . . . . . . . . 9  |-  ( ( ( ph  /\  G  =  ( i  e. 
om  |->  1o ) )  /\  n  e.  om )  ->  (/)  e.  2o )
8 1lt2o 6588 . . . . . . . . . 10  |-  1o  e.  2o
98a1i 9 . . . . . . . . 9  |-  ( ( ( ph  /\  G  =  ( i  e. 
om  |->  1o ) )  /\  n  e.  om )  ->  1o  e.  2o )
10 peano2 4687 . . . . . . . . . . . 12  |-  ( n  e.  om  ->  suc  n  e.  om )
1110adantl 277 . . . . . . . . . . 11  |-  ( ( ( ph  /\  G  =  ( i  e. 
om  |->  1o ) )  /\  n  e.  om )  ->  suc  n  e.  om )
12 nnfi 7034 . . . . . . . . . . 11  |-  ( suc  n  e.  om  ->  suc  n  e.  Fin )
1311, 12syl 14 . . . . . . . . . 10  |-  ( ( ( ph  /\  G  =  ( i  e. 
om  |->  1o ) )  /\  n  e.  om )  ->  suc  n  e.  Fin )
14 2ssom 6670 . . . . . . . . . . . . 13  |-  2o  C_  om
15 nninfwlpoimlemg.f . . . . . . . . . . . . . . 15  |-  ( ph  ->  F : om --> 2o )
1615ad3antrrr 492 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  G  =  ( i  e.  om  |->  1o ) )  /\  n  e.  om )  /\  x  e.  suc  n )  ->  F : om --> 2o )
17 simpr 110 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  G  =  ( i  e.  om  |->  1o ) )  /\  n  e.  om )  /\  x  e.  suc  n )  ->  x  e.  suc  n )
1811adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  G  =  ( i  e.  om  |->  1o ) )  /\  n  e.  om )  /\  x  e.  suc  n )  ->  suc  n  e.  om )
19 elnn 4698 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  suc  n  /\  suc  n  e.  om )  ->  x  e.  om )
2017, 18, 19syl2anc 411 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  G  =  ( i  e.  om  |->  1o ) )  /\  n  e.  om )  /\  x  e.  suc  n )  ->  x  e.  om )
2116, 20ffvelcdmd 5771 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  G  =  ( i  e.  om  |->  1o ) )  /\  n  e.  om )  /\  x  e.  suc  n )  ->  ( F `  x )  e.  2o )
2214, 21sselid 3222 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  G  =  ( i  e.  om  |->  1o ) )  /\  n  e.  om )  /\  x  e.  suc  n )  ->  ( F `  x )  e.  om )
23 peano1 4686 . . . . . . . . . . . . 13  |-  (/)  e.  om
2423a1i 9 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  G  =  ( i  e.  om  |->  1o ) )  /\  n  e.  om )  /\  x  e.  suc  n )  ->  (/)  e.  om )
25 nndceq 6645 . . . . . . . . . . . 12  |-  ( ( ( F `  x
)  e.  om  /\  (/) 
e.  om )  -> DECID  ( F `  x
)  =  (/) )
2622, 24, 25syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  G  =  ( i  e.  om  |->  1o ) )  /\  n  e.  om )  /\  x  e.  suc  n )  -> DECID  ( F `  x
)  =  (/) )
2726ralrimiva 2603 . . . . . . . . . 10  |-  ( ( ( ph  /\  G  =  ( i  e. 
om  |->  1o ) )  /\  n  e.  om )  ->  A. x  e.  suc  nDECID  ( F `  x )  =  (/) )
28 finexdc 7064 . . . . . . . . . 10  |-  ( ( suc  n  e.  Fin  /\ 
A. x  e.  suc  nDECID  ( F `  x )  =  (/) )  -> DECID  E. x  e.  suc  n ( F `  x )  =  (/) )
2913, 27, 28syl2anc 411 . . . . . . . . 9  |-  ( ( ( ph  /\  G  =  ( i  e. 
om  |->  1o ) )  /\  n  e.  om )  -> DECID  E. x  e.  suc  n ( F `  x )  =  (/) )
307, 9, 29ifcldcd 3640 . . . . . . . 8  |-  ( ( ( ph  /\  G  =  ( i  e. 
om  |->  1o ) )  /\  n  e.  om )  ->  if ( E. x  e.  suc  n
( F `  x
)  =  (/) ,  (/) ,  1o )  e.  2o )
311, 4, 5, 30fvmptd3 5728 . . . . . . 7  |-  ( ( ( ph  /\  G  =  ( i  e. 
om  |->  1o ) )  /\  n  e.  om )  ->  ( G `  n )  =  if ( E. x  e. 
suc  n ( F `
 x )  =  (/) ,  (/) ,  1o ) )
3231adantr 276 . . . . . 6  |-  ( ( ( ( ph  /\  G  =  ( i  e.  om  |->  1o ) )  /\  n  e.  om )  /\  ( F `  n )  =  (/) )  ->  ( G `  n )  =  if ( E. x  e. 
suc  n ( F `
 x )  =  (/) ,  (/) ,  1o ) )
33 vex 2802 . . . . . . . . . 10  |-  n  e. 
_V
3433sucid 4508 . . . . . . . . 9  |-  n  e. 
suc  n
3534a1i 9 . . . . . . . 8  |-  ( ( ( ( ph  /\  G  =  ( i  e.  om  |->  1o ) )  /\  n  e.  om )  /\  ( F `  n )  =  (/) )  ->  n  e.  suc  n )
36 simpr 110 . . . . . . . 8  |-  ( ( ( ( ph  /\  G  =  ( i  e.  om  |->  1o ) )  /\  n  e.  om )  /\  ( F `  n )  =  (/) )  ->  ( F `  n )  =  (/) )
37 fveqeq2 5636 . . . . . . . . 9  |-  ( x  =  n  ->  (
( F `  x
)  =  (/)  <->  ( F `  n )  =  (/) ) )
3837rspcev 2907 . . . . . . . 8  |-  ( ( n  e.  suc  n  /\  ( F `  n
)  =  (/) )  ->  E. x  e.  suc  n ( F `  x )  =  (/) )
3935, 36, 38syl2anc 411 . . . . . . 7  |-  ( ( ( ( ph  /\  G  =  ( i  e.  om  |->  1o ) )  /\  n  e.  om )  /\  ( F `  n )  =  (/) )  ->  E. x  e.  suc  n ( F `  x )  =  (/) )
4039iftrued 3609 . . . . . 6  |-  ( ( ( ( ph  /\  G  =  ( i  e.  om  |->  1o ) )  /\  n  e.  om )  /\  ( F `  n )  =  (/) )  ->  if ( E. x  e.  suc  n
( F `  x
)  =  (/) ,  (/) ,  1o )  =  (/) )
4132, 40eqtrd 2262 . . . . 5  |-  ( ( ( ( ph  /\  G  =  ( i  e.  om  |->  1o ) )  /\  n  e.  om )  /\  ( F `  n )  =  (/) )  ->  ( G `  n )  =  (/) )
42 1n0 6578 . . . . . . 7  |-  1o  =/=  (/)
4342neii 2402 . . . . . 6  |-  -.  1o  =  (/)
44 simpllr 534 . . . . . . . . 9  |-  ( ( ( ( ph  /\  G  =  ( i  e.  om  |->  1o ) )  /\  n  e.  om )  /\  ( F `  n )  =  (/) )  ->  G  =  ( i  e.  om  |->  1o ) )
4544fveq1d 5629 . . . . . . . 8  |-  ( ( ( ( ph  /\  G  =  ( i  e.  om  |->  1o ) )  /\  n  e.  om )  /\  ( F `  n )  =  (/) )  ->  ( G `  n )  =  ( ( i  e.  om  |->  1o ) `  n ) )
46 eqid 2229 . . . . . . . . 9  |-  ( i  e.  om  |->  1o )  =  ( i  e. 
om  |->  1o )
47 eqidd 2230 . . . . . . . . 9  |-  ( i  =  n  ->  1o  =  1o )
485adantr 276 . . . . . . . . 9  |-  ( ( ( ( ph  /\  G  =  ( i  e.  om  |->  1o ) )  /\  n  e.  om )  /\  ( F `  n )  =  (/) )  ->  n  e.  om )
498a1i 9 . . . . . . . . 9  |-  ( ( ( ( ph  /\  G  =  ( i  e.  om  |->  1o ) )  /\  n  e.  om )  /\  ( F `  n )  =  (/) )  ->  1o  e.  2o )
5046, 47, 48, 49fvmptd3 5728 . . . . . . . 8  |-  ( ( ( ( ph  /\  G  =  ( i  e.  om  |->  1o ) )  /\  n  e.  om )  /\  ( F `  n )  =  (/) )  ->  ( ( i  e.  om  |->  1o ) `
 n )  =  1o )
5145, 50eqtrd 2262 . . . . . . 7  |-  ( ( ( ( ph  /\  G  =  ( i  e.  om  |->  1o ) )  /\  n  e.  om )  /\  ( F `  n )  =  (/) )  ->  ( G `  n )  =  1o )
5251eqeq1d 2238 . . . . . 6  |-  ( ( ( ( ph  /\  G  =  ( i  e.  om  |->  1o ) )  /\  n  e.  om )  /\  ( F `  n )  =  (/) )  ->  ( ( G `
 n )  =  (/) 
<->  1o  =  (/) ) )
5343, 52mtbiri 679 . . . . 5  |-  ( ( ( ( ph  /\  G  =  ( i  e.  om  |->  1o ) )  /\  n  e.  om )  /\  ( F `  n )  =  (/) )  ->  -.  ( G `  n )  =  (/) )
5441, 53pm2.65da 665 . . . 4  |-  ( ( ( ph  /\  G  =  ( i  e. 
om  |->  1o ) )  /\  n  e.  om )  ->  -.  ( F `  n )  =  (/) )
5515adantr 276 . . . . . . 7  |-  ( (
ph  /\  G  =  ( i  e.  om  |->  1o ) )  ->  F : om --> 2o )
5655ffvelcdmda 5770 . . . . . 6  |-  ( ( ( ph  /\  G  =  ( i  e. 
om  |->  1o ) )  /\  n  e.  om )  ->  ( F `  n )  e.  2o )
57 elpri 3689 . . . . . . 7  |-  ( ( F `  n )  e.  { (/) ,  1o }  ->  ( ( F `
 n )  =  (/)  \/  ( F `  n )  =  1o ) )
58 df2o3 6576 . . . . . . 7  |-  2o  =  { (/) ,  1o }
5957, 58eleq2s 2324 . . . . . 6  |-  ( ( F `  n )  e.  2o  ->  (
( F `  n
)  =  (/)  \/  ( F `  n )  =  1o ) )
6056, 59syl 14 . . . . 5  |-  ( ( ( ph  /\  G  =  ( i  e. 
om  |->  1o ) )  /\  n  e.  om )  ->  ( ( F `
 n )  =  (/)  \/  ( F `  n )  =  1o ) )
6160orcomd 734 . . . 4  |-  ( ( ( ph  /\  G  =  ( i  e. 
om  |->  1o ) )  /\  n  e.  om )  ->  ( ( F `
 n )  =  1o  \/  ( F `
 n )  =  (/) ) )
6254, 61ecased 1383 . . 3  |-  ( ( ( ph  /\  G  =  ( i  e. 
om  |->  1o ) )  /\  n  e.  om )  ->  ( F `  n )  =  1o )
6362ralrimiva 2603 . 2  |-  ( (
ph  /\  G  =  ( i  e.  om  |->  1o ) )  ->  A. n  e.  om  ( F `  n )  =  1o )
64 eqeq1 2236 . . . . . . . . . . 11  |-  ( ( F `  n )  =  1o  ->  (
( F `  n
)  =  (/)  <->  1o  =  (/) ) )
6543, 64mtbiri 679 . . . . . . . . . 10  |-  ( ( F `  n )  =  1o  ->  -.  ( F `  n )  =  (/) )
6665ralimi 2593 . . . . . . . . 9  |-  ( A. n  e.  om  ( F `  n )  =  1o  ->  A. n  e.  om  -.  ( F `
 n )  =  (/) )
67 ralnex 2518 . . . . . . . . 9  |-  ( A. n  e.  om  -.  ( F `  n )  =  (/)  <->  -.  E. n  e.  om  ( F `  n )  =  (/) )
6866, 67sylib 122 . . . . . . . 8  |-  ( A. n  e.  om  ( F `  n )  =  1o  ->  -.  E. n  e.  om  ( F `  n )  =  (/) )
69 fveqeq2 5636 . . . . . . . . 9  |-  ( n  =  x  ->  (
( F `  n
)  =  (/)  <->  ( F `  x )  =  (/) ) )
7069cbvrexv 2766 . . . . . . . 8  |-  ( E. n  e.  om  ( F `  n )  =  (/)  <->  E. x  e.  om  ( F `  x )  =  (/) )
7168, 70sylnib 680 . . . . . . 7  |-  ( A. n  e.  om  ( F `  n )  =  1o  ->  -.  E. x  e.  om  ( F `  x )  =  (/) )
7271ad2antlr 489 . . . . . 6  |-  ( ( ( ph  /\  A. n  e.  om  ( F `  n )  =  1o )  /\  i  e.  om )  ->  -.  E. x  e.  om  ( F `  x )  =  (/) )
73 peano2 4687 . . . . . . . 8  |-  ( i  e.  om  ->  suc  i  e.  om )
7473adantl 277 . . . . . . 7  |-  ( ( ( ph  /\  A. n  e.  om  ( F `  n )  =  1o )  /\  i  e.  om )  ->  suc  i  e.  om )
75 elomssom 4697 . . . . . . 7  |-  ( suc  i  e.  om  ->  suc  i  C_  om )
76 ssrexv 3289 . . . . . . 7  |-  ( suc  i  C_  om  ->  ( E. x  e.  suc  i ( F `  x )  =  (/)  ->  E. x  e.  om  ( F `  x )  =  (/) ) )
7774, 75, 763syl 17 . . . . . 6  |-  ( ( ( ph  /\  A. n  e.  om  ( F `  n )  =  1o )  /\  i  e.  om )  ->  ( E. x  e.  suc  i ( F `  x )  =  (/)  ->  E. x  e.  om  ( F `  x )  =  (/) ) )
7872, 77mtod 667 . . . . 5  |-  ( ( ( ph  /\  A. n  e.  om  ( F `  n )  =  1o )  /\  i  e.  om )  ->  -.  E. x  e.  suc  i
( F `  x
)  =  (/) )
7978iffalsed 3612 . . . 4  |-  ( ( ( ph  /\  A. n  e.  om  ( F `  n )  =  1o )  /\  i  e.  om )  ->  if ( E. x  e.  suc  i ( F `  x )  =  (/) ,  (/) ,  1o )  =  1o )
8079mpteq2dva 4174 . . 3  |-  ( (
ph  /\  A. n  e.  om  ( F `  n )  =  1o )  ->  ( i  e.  om  |->  if ( E. x  e.  suc  i
( F `  x
)  =  (/) ,  (/) ,  1o ) )  =  ( i  e.  om  |->  1o ) )
811, 80eqtrid 2274 . 2  |-  ( (
ph  /\  A. n  e.  om  ( F `  n )  =  1o )  ->  G  =  ( i  e.  om  |->  1o ) )
8263, 81impbida 598 1  |-  ( ph  ->  ( G  =  ( i  e.  om  |->  1o )  <->  A. n  e.  om  ( F `  n )  =  1o ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713  DECID wdc 839    = wceq 1395    e. wcel 2200   A.wral 2508   E.wrex 2509    C_ wss 3197   (/)c0 3491   ifcif 3602   {cpr 3667    |-> cmpt 4145   suc csuc 4456   omcom 4682   -->wf 5314   ` cfv 5318   1oc1o 6555   2oc2o 6556   Fincfn 6887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-1o 6562  df-2o 6563  df-er 6680  df-en 6888  df-fin 6890
This theorem is referenced by:  nninfwlpoimlemdc  7344  nninfinfwlpolem  7345
  Copyright terms: Public domain W3C validator