ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordtriexmidlem2 Unicode version

Theorem ordtriexmidlem2 4586
Description: Lemma for decidability and ordinals. The set  { x  e.  { (/)
}  |  ph } is a way of connecting statements about ordinals (such as trichotomy in ordtriexmid 4587 or weak linearity in ordsoexmid 4628) with a proposition  ph. Our lemma helps connect that set to excluded middle. (Contributed by Jim Kingdon, 28-Jan-2019.)
Assertion
Ref Expression
ordtriexmidlem2  |-  ( { x  e.  { (/) }  |  ph }  =  (/) 
->  -.  ph )
Distinct variable group:    ph, x

Proof of Theorem ordtriexmidlem2
StepHypRef Expression
1 noel 3472 . . 3  |-  -.  (/)  e.  (/)
2 eleq2 2271 . . 3  |-  ( { x  e.  { (/) }  |  ph }  =  (/) 
->  ( (/)  e.  { x  e.  { (/) }  |  ph } 
<->  (/)  e.  (/) ) )
31, 2mtbiri 677 . 2  |-  ( { x  e.  { (/) }  |  ph }  =  (/) 
->  -.  (/)  e.  { x  e.  { (/) }  |  ph } )
4 0ex 4187 . . . 4  |-  (/)  e.  _V
54snid 3674 . . 3  |-  (/)  e.  { (/)
}
6 biidd 172 . . . 4  |-  ( x  =  (/)  ->  ( ph  <->  ph ) )
76elrab3 2937 . . 3  |-  ( (/)  e.  { (/) }  ->  ( (/) 
e.  { x  e. 
{ (/) }  |  ph } 
<-> 
ph ) )
85, 7ax-mp 5 . 2  |-  ( (/)  e.  { x  e.  { (/)
}  |  ph }  <->  ph )
93, 8sylnib 678 1  |-  ( { x  e.  { (/) }  |  ph }  =  (/) 
->  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105    = wceq 1373    e. wcel 2178   {crab 2490   (/)c0 3468   {csn 3643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189  ax-nul 4186
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rab 2495  df-v 2778  df-dif 3176  df-nul 3469  df-sn 3649
This theorem is referenced by:  ordtriexmid  4587  ontriexmidim  4588  ordtri2orexmid  4589  ontr2exmid  4591  onsucsssucexmid  4593  ordsoexmid  4628  0elsucexmid  4631  ordpwsucexmid  4636
  Copyright terms: Public domain W3C validator