ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordtriexmidlem2 Unicode version

Theorem ordtriexmidlem2 4568
Description: Lemma for decidability and ordinals. The set  { x  e.  { (/)
}  |  ph } is a way of connecting statements about ordinals (such as trichotomy in ordtriexmid 4569 or weak linearity in ordsoexmid 4610) with a proposition  ph. Our lemma helps connect that set to excluded middle. (Contributed by Jim Kingdon, 28-Jan-2019.)
Assertion
Ref Expression
ordtriexmidlem2  |-  ( { x  e.  { (/) }  |  ph }  =  (/) 
->  -.  ph )
Distinct variable group:    ph, x

Proof of Theorem ordtriexmidlem2
StepHypRef Expression
1 noel 3464 . . 3  |-  -.  (/)  e.  (/)
2 eleq2 2269 . . 3  |-  ( { x  e.  { (/) }  |  ph }  =  (/) 
->  ( (/)  e.  { x  e.  { (/) }  |  ph } 
<->  (/)  e.  (/) ) )
31, 2mtbiri 677 . 2  |-  ( { x  e.  { (/) }  |  ph }  =  (/) 
->  -.  (/)  e.  { x  e.  { (/) }  |  ph } )
4 0ex 4171 . . . 4  |-  (/)  e.  _V
54snid 3664 . . 3  |-  (/)  e.  { (/)
}
6 biidd 172 . . . 4  |-  ( x  =  (/)  ->  ( ph  <->  ph ) )
76elrab3 2930 . . 3  |-  ( (/)  e.  { (/) }  ->  ( (/) 
e.  { x  e. 
{ (/) }  |  ph } 
<-> 
ph ) )
85, 7ax-mp 5 . 2  |-  ( (/)  e.  { x  e.  { (/)
}  |  ph }  <->  ph )
93, 8sylnib 678 1  |-  ( { x  e.  { (/) }  |  ph }  =  (/) 
->  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105    = wceq 1373    e. wcel 2176   {crab 2488   (/)c0 3460   {csn 3633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187  ax-nul 4170
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rab 2493  df-v 2774  df-dif 3168  df-nul 3461  df-sn 3639
This theorem is referenced by:  ordtriexmid  4569  ontriexmidim  4570  ordtri2orexmid  4571  ontr2exmid  4573  onsucsssucexmid  4575  ordsoexmid  4610  0elsucexmid  4613  ordpwsucexmid  4618
  Copyright terms: Public domain W3C validator