ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordtriexmidlem2 Unicode version

Theorem ordtriexmidlem2 4612
Description: Lemma for decidability and ordinals. The set  { x  e.  { (/)
}  |  ph } is a way of connecting statements about ordinals (such as trichotomy in ordtriexmid 4613 or weak linearity in ordsoexmid 4654) with a proposition  ph. Our lemma helps connect that set to excluded middle. (Contributed by Jim Kingdon, 28-Jan-2019.)
Assertion
Ref Expression
ordtriexmidlem2  |-  ( { x  e.  { (/) }  |  ph }  =  (/) 
->  -.  ph )
Distinct variable group:    ph, x

Proof of Theorem ordtriexmidlem2
StepHypRef Expression
1 noel 3495 . . 3  |-  -.  (/)  e.  (/)
2 eleq2 2293 . . 3  |-  ( { x  e.  { (/) }  |  ph }  =  (/) 
->  ( (/)  e.  { x  e.  { (/) }  |  ph } 
<->  (/)  e.  (/) ) )
31, 2mtbiri 679 . 2  |-  ( { x  e.  { (/) }  |  ph }  =  (/) 
->  -.  (/)  e.  { x  e.  { (/) }  |  ph } )
4 0ex 4211 . . . 4  |-  (/)  e.  _V
54snid 3697 . . 3  |-  (/)  e.  { (/)
}
6 biidd 172 . . . 4  |-  ( x  =  (/)  ->  ( ph  <->  ph ) )
76elrab3 2960 . . 3  |-  ( (/)  e.  { (/) }  ->  ( (/) 
e.  { x  e. 
{ (/) }  |  ph } 
<-> 
ph ) )
85, 7ax-mp 5 . 2  |-  ( (/)  e.  { x  e.  { (/)
}  |  ph }  <->  ph )
93, 8sylnib 680 1  |-  ( { x  e.  { (/) }  |  ph }  =  (/) 
->  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105    = wceq 1395    e. wcel 2200   {crab 2512   (/)c0 3491   {csn 3666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-nul 4210
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rab 2517  df-v 2801  df-dif 3199  df-nul 3492  df-sn 3672
This theorem is referenced by:  ordtriexmid  4613  ontriexmidim  4614  ordtri2orexmid  4615  ontr2exmid  4617  onsucsssucexmid  4619  ordsoexmid  4654  0elsucexmid  4657  ordpwsucexmid  4662
  Copyright terms: Public domain W3C validator