ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordtriexmidlem2 Unicode version

Theorem ordtriexmidlem2 4521
Description: Lemma for decidability and ordinals. The set  { x  e.  { (/)
}  |  ph } is a way of connecting statements about ordinals (such as trichotomy in ordtriexmid 4522 or weak linearity in ordsoexmid 4563) with a proposition  ph. Our lemma helps connect that set to excluded middle. (Contributed by Jim Kingdon, 28-Jan-2019.)
Assertion
Ref Expression
ordtriexmidlem2  |-  ( { x  e.  { (/) }  |  ph }  =  (/) 
->  -.  ph )
Distinct variable group:    ph, x

Proof of Theorem ordtriexmidlem2
StepHypRef Expression
1 noel 3428 . . 3  |-  -.  (/)  e.  (/)
2 eleq2 2241 . . 3  |-  ( { x  e.  { (/) }  |  ph }  =  (/) 
->  ( (/)  e.  { x  e.  { (/) }  |  ph } 
<->  (/)  e.  (/) ) )
31, 2mtbiri 675 . 2  |-  ( { x  e.  { (/) }  |  ph }  =  (/) 
->  -.  (/)  e.  { x  e.  { (/) }  |  ph } )
4 0ex 4132 . . . 4  |-  (/)  e.  _V
54snid 3625 . . 3  |-  (/)  e.  { (/)
}
6 biidd 172 . . . 4  |-  ( x  =  (/)  ->  ( ph  <->  ph ) )
76elrab3 2896 . . 3  |-  ( (/)  e.  { (/) }  ->  ( (/) 
e.  { x  e. 
{ (/) }  |  ph } 
<-> 
ph ) )
85, 7ax-mp 5 . 2  |-  ( (/)  e.  { x  e.  { (/)
}  |  ph }  <->  ph )
93, 8sylnib 676 1  |-  ( { x  e.  { (/) }  |  ph }  =  (/) 
->  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105    = wceq 1353    e. wcel 2148   {crab 2459   (/)c0 3424   {csn 3594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159  ax-nul 4131
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rab 2464  df-v 2741  df-dif 3133  df-nul 3425  df-sn 3600
This theorem is referenced by:  ordtriexmid  4522  ontriexmidim  4523  ordtri2orexmid  4524  ontr2exmid  4526  onsucsssucexmid  4528  ordsoexmid  4563  0elsucexmid  4566  ordpwsucexmid  4571
  Copyright terms: Public domain W3C validator