ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqf1olemqcl Unicode version

Theorem iseqf1olemqcl 10259
Description: Lemma for seq3f1o 10277. (Contributed by Jim Kingdon, 27-Aug-2022.)
Hypotheses
Ref Expression
iseqf1olemqcl.k  |-  ( ph  ->  K  e.  ( M ... N ) )
iseqf1olemqcl.j  |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )
iseqf1olemqcl.a  |-  ( ph  ->  A  e.  ( M ... N ) )
Assertion
Ref Expression
iseqf1olemqcl  |-  ( ph  ->  if ( A  e.  ( K ... ( `' J `  K ) ) ,  if ( A  =  K ,  K ,  ( J `  ( A  -  1 ) ) ) ,  ( J `  A
) )  e.  ( M ... N ) )

Proof of Theorem iseqf1olemqcl
StepHypRef Expression
1 iseqf1olemqcl.k . . . 4  |-  ( ph  ->  K  e.  ( M ... N ) )
21ad2antrr 479 . . 3  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  A  =  K )  ->  K  e.  ( M ... N
) )
3 iseqf1olemqcl.j . . . . . 6  |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )
4 f1of 5367 . . . . . 6  |-  ( J : ( M ... N ) -1-1-onto-> ( M ... N
)  ->  J :
( M ... N
) --> ( M ... N ) )
53, 4syl 14 . . . . 5  |-  ( ph  ->  J : ( M ... N ) --> ( M ... N ) )
65ad2antrr 479 . . . 4  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  J : ( M ... N ) --> ( M ... N ) )
71ad2antrr 479 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  K  e.  ( M ... N ) )
8 elfzel1 9805 . . . . . . 7  |-  ( K  e.  ( M ... N )  ->  M  e.  ZZ )
97, 8syl 14 . . . . . 6  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  M  e.  ZZ )
10 elfzel2 9804 . . . . . . 7  |-  ( K  e.  ( M ... N )  ->  N  e.  ZZ )
117, 10syl 14 . . . . . 6  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  N  e.  ZZ )
12 iseqf1olemqcl.a . . . . . . . . 9  |-  ( ph  ->  A  e.  ( M ... N ) )
13 elfzelz 9806 . . . . . . . . 9  |-  ( A  e.  ( M ... N )  ->  A  e.  ZZ )
1412, 13syl 14 . . . . . . . 8  |-  ( ph  ->  A  e.  ZZ )
1514ad2antrr 479 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  A  e.  ZZ )
16 peano2zm 9092 . . . . . . 7  |-  ( A  e.  ZZ  ->  ( A  -  1 )  e.  ZZ )
1715, 16syl 14 . . . . . 6  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  ( A  -  1 )  e.  ZZ )
189, 11, 173jca 1161 . . . . 5  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( A  -  1
)  e.  ZZ ) )
199zred 9173 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  M  e.  RR )
20 elfzelz 9806 . . . . . . . . 9  |-  ( K  e.  ( M ... N )  ->  K  e.  ZZ )
217, 20syl 14 . . . . . . . 8  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  K  e.  ZZ )
2221zred 9173 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  K  e.  RR )
2317zred 9173 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  ( A  -  1 )  e.  RR )
24 elfzle1 9807 . . . . . . . 8  |-  ( K  e.  ( M ... N )  ->  M  <_  K )
257, 24syl 14 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  M  <_  K )
26 simpr 109 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  -.  A  =  K )
27 eqcom 2141 . . . . . . . . . 10  |-  ( A  =  K  <->  K  =  A )
2826, 27sylnib 665 . . . . . . . . 9  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  -.  K  =  A )
29 elfzle1 9807 . . . . . . . . . . 11  |-  ( A  e.  ( K ... ( `' J `  K ) )  ->  K  <_  A )
3029ad2antlr 480 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  K  <_  A )
31 zleloe 9101 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  A  e.  ZZ )  ->  ( K  <_  A  <->  ( K  <  A  \/  K  =  A )
) )
3221, 15, 31syl2anc 408 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  ( K  <_  A  <->  ( K  <  A  \/  K  =  A )
) )
3330, 32mpbid 146 . . . . . . . . 9  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  ( K  <  A  \/  K  =  A
) )
3428, 33ecased 1327 . . . . . . . 8  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  K  <  A )
35 zltlem1 9111 . . . . . . . . 9  |-  ( ( K  e.  ZZ  /\  A  e.  ZZ )  ->  ( K  <  A  <->  K  <_  ( A  - 
1 ) ) )
3621, 15, 35syl2anc 408 . . . . . . . 8  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  ( K  <  A  <->  K  <_  ( A  - 
1 ) ) )
3734, 36mpbid 146 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  K  <_  ( A  -  1 ) )
3819, 22, 23, 25, 37letrd 7886 . . . . . 6  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  M  <_  ( A  -  1 ) )
3915zred 9173 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  A  e.  RR )
4011zred 9173 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  N  e.  RR )
4139lem1d 8691 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  ( A  -  1 )  <_  A )
4212ad2antrr 479 . . . . . . . 8  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  A  e.  ( M ... N ) )
43 elfzle2 9808 . . . . . . . 8  |-  ( A  e.  ( M ... N )  ->  A  <_  N )
4442, 43syl 14 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  A  <_  N )
4523, 39, 40, 41, 44letrd 7886 . . . . . 6  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  ( A  -  1 )  <_  N )
4638, 45jca 304 . . . . 5  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  ( M  <_  ( A  -  1 )  /\  ( A  - 
1 )  <_  N
) )
47 elfz2 9797 . . . . 5  |-  ( ( A  -  1 )  e.  ( M ... N )  <->  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( A  -  1 )  e.  ZZ )  /\  ( M  <_  ( A  - 
1 )  /\  ( A  -  1 )  <_  N ) ) )
4818, 46, 47sylanbrc 413 . . . 4  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  ( A  -  1 )  e.  ( M ... N ) )
496, 48ffvelrnd 5556 . . 3  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  ( J `  ( A  -  1 ) )  e.  ( M ... N ) )
501, 20syl 14 . . . . 5  |-  ( ph  ->  K  e.  ZZ )
51 zdceq 9126 . . . . 5  |-  ( ( A  e.  ZZ  /\  K  e.  ZZ )  -> DECID  A  =  K )
5214, 50, 51syl2anc 408 . . . 4  |-  ( ph  -> DECID  A  =  K )
5352adantr 274 . . 3  |-  ( (
ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  -> DECID  A  =  K
)
542, 49, 53ifcldadc 3501 . 2  |-  ( (
ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  ->  if ( A  =  K ,  K ,  ( J `
 ( A  - 
1 ) ) )  e.  ( M ... N ) )
555, 12ffvelrnd 5556 . . 3  |-  ( ph  ->  ( J `  A
)  e.  ( M ... N ) )
5655adantr 274 . 2  |-  ( (
ph  /\  -.  A  e.  ( K ... ( `' J `  K ) ) )  ->  ( J `  A )  e.  ( M ... N
) )
57 f1ocnv 5380 . . . . . 6  |-  ( J : ( M ... N ) -1-1-onto-> ( M ... N
)  ->  `' J : ( M ... N ) -1-1-onto-> ( M ... N
) )
58 f1of 5367 . . . . . 6  |-  ( `' J : ( M ... N ) -1-1-onto-> ( M ... N )  ->  `' J : ( M ... N ) --> ( M ... N ) )
593, 57, 583syl 17 . . . . 5  |-  ( ph  ->  `' J : ( M ... N ) --> ( M ... N ) )
6059, 1ffvelrnd 5556 . . . 4  |-  ( ph  ->  ( `' J `  K )  e.  ( M ... N ) )
61 elfzelz 9806 . . . 4  |-  ( ( `' J `  K )  e.  ( M ... N )  ->  ( `' J `  K )  e.  ZZ )
6260, 61syl 14 . . 3  |-  ( ph  ->  ( `' J `  K )  e.  ZZ )
63 fzdcel 9820 . . 3  |-  ( ( A  e.  ZZ  /\  K  e.  ZZ  /\  ( `' J `  K )  e.  ZZ )  -> DECID  A  e.  ( K ... ( `' J `  K ) ) )
6414, 50, 62, 63syl3anc 1216 . 2  |-  ( ph  -> DECID  A  e.  ( K ... ( `' J `  K ) ) )
6554, 56, 64ifcldadc 3501 1  |-  ( ph  ->  if ( A  e.  ( K ... ( `' J `  K ) ) ,  if ( A  =  K ,  K ,  ( J `  ( A  -  1 ) ) ) ,  ( J `  A
) )  e.  ( M ... N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697  DECID wdc 819    /\ w3a 962    = wceq 1331    e. wcel 1480   ifcif 3474   class class class wbr 3929   `'ccnv 4538   -->wf 5119   -1-1-onto->wf1o 5122   ` cfv 5123  (class class class)co 5774   1c1 7621    < clt 7800    <_ cle 7801    - cmin 7933   ZZcz 9054   ...cfz 9790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-inn 8721  df-n0 8978  df-z 9055  df-uz 9327  df-fz 9791
This theorem is referenced by:  iseqf1olemqval  10260  iseqf1olemqf  10264
  Copyright terms: Public domain W3C validator