ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqf1olemqcl Unicode version

Theorem iseqf1olemqcl 10646
Description: Lemma for seq3f1o 10664. (Contributed by Jim Kingdon, 27-Aug-2022.)
Hypotheses
Ref Expression
iseqf1olemqcl.k  |-  ( ph  ->  K  e.  ( M ... N ) )
iseqf1olemqcl.j  |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )
iseqf1olemqcl.a  |-  ( ph  ->  A  e.  ( M ... N ) )
Assertion
Ref Expression
iseqf1olemqcl  |-  ( ph  ->  if ( A  e.  ( K ... ( `' J `  K ) ) ,  if ( A  =  K ,  K ,  ( J `  ( A  -  1 ) ) ) ,  ( J `  A
) )  e.  ( M ... N ) )

Proof of Theorem iseqf1olemqcl
StepHypRef Expression
1 iseqf1olemqcl.k . . . 4  |-  ( ph  ->  K  e.  ( M ... N ) )
21ad2antrr 488 . . 3  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  A  =  K )  ->  K  e.  ( M ... N
) )
3 iseqf1olemqcl.j . . . . . 6  |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )
4 f1of 5524 . . . . . 6  |-  ( J : ( M ... N ) -1-1-onto-> ( M ... N
)  ->  J :
( M ... N
) --> ( M ... N ) )
53, 4syl 14 . . . . 5  |-  ( ph  ->  J : ( M ... N ) --> ( M ... N ) )
65ad2antrr 488 . . . 4  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  J : ( M ... N ) --> ( M ... N ) )
71ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  K  e.  ( M ... N ) )
8 elfzel1 10148 . . . . . . 7  |-  ( K  e.  ( M ... N )  ->  M  e.  ZZ )
97, 8syl 14 . . . . . 6  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  M  e.  ZZ )
10 elfzel2 10147 . . . . . . 7  |-  ( K  e.  ( M ... N )  ->  N  e.  ZZ )
117, 10syl 14 . . . . . 6  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  N  e.  ZZ )
12 iseqf1olemqcl.a . . . . . . . . 9  |-  ( ph  ->  A  e.  ( M ... N ) )
13 elfzelz 10149 . . . . . . . . 9  |-  ( A  e.  ( M ... N )  ->  A  e.  ZZ )
1412, 13syl 14 . . . . . . . 8  |-  ( ph  ->  A  e.  ZZ )
1514ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  A  e.  ZZ )
16 peano2zm 9412 . . . . . . 7  |-  ( A  e.  ZZ  ->  ( A  -  1 )  e.  ZZ )
1715, 16syl 14 . . . . . 6  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  ( A  -  1 )  e.  ZZ )
189, 11, 173jca 1180 . . . . 5  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( A  -  1
)  e.  ZZ ) )
199zred 9497 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  M  e.  RR )
20 elfzelz 10149 . . . . . . . . 9  |-  ( K  e.  ( M ... N )  ->  K  e.  ZZ )
217, 20syl 14 . . . . . . . 8  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  K  e.  ZZ )
2221zred 9497 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  K  e.  RR )
2317zred 9497 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  ( A  -  1 )  e.  RR )
24 elfzle1 10151 . . . . . . . 8  |-  ( K  e.  ( M ... N )  ->  M  <_  K )
257, 24syl 14 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  M  <_  K )
26 simpr 110 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  -.  A  =  K )
27 eqcom 2207 . . . . . . . . . 10  |-  ( A  =  K  <->  K  =  A )
2826, 27sylnib 678 . . . . . . . . 9  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  -.  K  =  A )
29 elfzle1 10151 . . . . . . . . . . 11  |-  ( A  e.  ( K ... ( `' J `  K ) )  ->  K  <_  A )
3029ad2antlr 489 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  K  <_  A )
31 zleloe 9421 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  A  e.  ZZ )  ->  ( K  <_  A  <->  ( K  <  A  \/  K  =  A )
) )
3221, 15, 31syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  ( K  <_  A  <->  ( K  <  A  \/  K  =  A )
) )
3330, 32mpbid 147 . . . . . . . . 9  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  ( K  <  A  \/  K  =  A
) )
3428, 33ecased 1362 . . . . . . . 8  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  K  <  A )
35 zltlem1 9432 . . . . . . . . 9  |-  ( ( K  e.  ZZ  /\  A  e.  ZZ )  ->  ( K  <  A  <->  K  <_  ( A  - 
1 ) ) )
3621, 15, 35syl2anc 411 . . . . . . . 8  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  ( K  <  A  <->  K  <_  ( A  - 
1 ) ) )
3734, 36mpbid 147 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  K  <_  ( A  -  1 ) )
3819, 22, 23, 25, 37letrd 8198 . . . . . 6  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  M  <_  ( A  -  1 ) )
3915zred 9497 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  A  e.  RR )
4011zred 9497 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  N  e.  RR )
4139lem1d 9008 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  ( A  -  1 )  <_  A )
4212ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  A  e.  ( M ... N ) )
43 elfzle2 10152 . . . . . . . 8  |-  ( A  e.  ( M ... N )  ->  A  <_  N )
4442, 43syl 14 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  A  <_  N )
4523, 39, 40, 41, 44letrd 8198 . . . . . 6  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  ( A  -  1 )  <_  N )
4638, 45jca 306 . . . . 5  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  ( M  <_  ( A  -  1 )  /\  ( A  - 
1 )  <_  N
) )
47 elfz2 10139 . . . . 5  |-  ( ( A  -  1 )  e.  ( M ... N )  <->  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( A  -  1 )  e.  ZZ )  /\  ( M  <_  ( A  - 
1 )  /\  ( A  -  1 )  <_  N ) ) )
4818, 46, 47sylanbrc 417 . . . 4  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  ( A  -  1 )  e.  ( M ... N ) )
496, 48ffvelcdmd 5718 . . 3  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  ( J `  ( A  -  1 ) )  e.  ( M ... N ) )
501, 20syl 14 . . . . 5  |-  ( ph  ->  K  e.  ZZ )
51 zdceq 9450 . . . . 5  |-  ( ( A  e.  ZZ  /\  K  e.  ZZ )  -> DECID  A  =  K )
5214, 50, 51syl2anc 411 . . . 4  |-  ( ph  -> DECID  A  =  K )
5352adantr 276 . . 3  |-  ( (
ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  -> DECID  A  =  K
)
542, 49, 53ifcldadc 3600 . 2  |-  ( (
ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  ->  if ( A  =  K ,  K ,  ( J `
 ( A  - 
1 ) ) )  e.  ( M ... N ) )
555, 12ffvelcdmd 5718 . . 3  |-  ( ph  ->  ( J `  A
)  e.  ( M ... N ) )
5655adantr 276 . 2  |-  ( (
ph  /\  -.  A  e.  ( K ... ( `' J `  K ) ) )  ->  ( J `  A )  e.  ( M ... N
) )
57 f1ocnv 5537 . . . . . 6  |-  ( J : ( M ... N ) -1-1-onto-> ( M ... N
)  ->  `' J : ( M ... N ) -1-1-onto-> ( M ... N
) )
58 f1of 5524 . . . . . 6  |-  ( `' J : ( M ... N ) -1-1-onto-> ( M ... N )  ->  `' J : ( M ... N ) --> ( M ... N ) )
593, 57, 583syl 17 . . . . 5  |-  ( ph  ->  `' J : ( M ... N ) --> ( M ... N ) )
6059, 1ffvelcdmd 5718 . . . 4  |-  ( ph  ->  ( `' J `  K )  e.  ( M ... N ) )
61 elfzelz 10149 . . . 4  |-  ( ( `' J `  K )  e.  ( M ... N )  ->  ( `' J `  K )  e.  ZZ )
6260, 61syl 14 . . 3  |-  ( ph  ->  ( `' J `  K )  e.  ZZ )
63 fzdcel 10164 . . 3  |-  ( ( A  e.  ZZ  /\  K  e.  ZZ  /\  ( `' J `  K )  e.  ZZ )  -> DECID  A  e.  ( K ... ( `' J `  K ) ) )
6414, 50, 62, 63syl3anc 1250 . 2  |-  ( ph  -> DECID  A  e.  ( K ... ( `' J `  K ) ) )
6554, 56, 64ifcldadc 3600 1  |-  ( ph  ->  if ( A  e.  ( K ... ( `' J `  K ) ) ,  if ( A  =  K ,  K ,  ( J `  ( A  -  1 ) ) ) ,  ( J `  A
) )  e.  ( M ... N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710  DECID wdc 836    /\ w3a 981    = wceq 1373    e. wcel 2176   ifcif 3571   class class class wbr 4045   `'ccnv 4675   -->wf 5268   -1-1-onto->wf1o 5271   ` cfv 5272  (class class class)co 5946   1c1 7928    < clt 8109    <_ cle 8110    - cmin 8245   ZZcz 9374   ...cfz 10132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-addcom 8027  ax-addass 8029  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-0id 8035  ax-rnegex 8036  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-ltadd 8043
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-inn 9039  df-n0 9298  df-z 9375  df-uz 9651  df-fz 10133
This theorem is referenced by:  iseqf1olemqval  10647  iseqf1olemqf  10651
  Copyright terms: Public domain W3C validator