Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iseqf1olemqcl | Unicode version |
Description: Lemma for seq3f1o 10439. (Contributed by Jim Kingdon, 27-Aug-2022.) |
Ref | Expression |
---|---|
iseqf1olemqcl.k | |
iseqf1olemqcl.j | |
iseqf1olemqcl.a |
Ref | Expression |
---|---|
iseqf1olemqcl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iseqf1olemqcl.k | . . . 4 | |
2 | 1 | ad2antrr 480 | . . 3 |
3 | iseqf1olemqcl.j | . . . . . 6 | |
4 | f1of 5432 | . . . . . 6 | |
5 | 3, 4 | syl 14 | . . . . 5 |
6 | 5 | ad2antrr 480 | . . . 4 |
7 | 1 | ad2antrr 480 | . . . . . . 7 |
8 | elfzel1 9959 | . . . . . . 7 | |
9 | 7, 8 | syl 14 | . . . . . 6 |
10 | elfzel2 9958 | . . . . . . 7 | |
11 | 7, 10 | syl 14 | . . . . . 6 |
12 | iseqf1olemqcl.a | . . . . . . . . 9 | |
13 | elfzelz 9960 | . . . . . . . . 9 | |
14 | 12, 13 | syl 14 | . . . . . . . 8 |
15 | 14 | ad2antrr 480 | . . . . . . 7 |
16 | peano2zm 9229 | . . . . . . 7 | |
17 | 15, 16 | syl 14 | . . . . . 6 |
18 | 9, 11, 17 | 3jca 1167 | . . . . 5 |
19 | 9 | zred 9313 | . . . . . . 7 |
20 | elfzelz 9960 | . . . . . . . . 9 | |
21 | 7, 20 | syl 14 | . . . . . . . 8 |
22 | 21 | zred 9313 | . . . . . . 7 |
23 | 17 | zred 9313 | . . . . . . 7 |
24 | elfzle1 9962 | . . . . . . . 8 | |
25 | 7, 24 | syl 14 | . . . . . . 7 |
26 | simpr 109 | . . . . . . . . . 10 | |
27 | eqcom 2167 | . . . . . . . . . 10 | |
28 | 26, 27 | sylnib 666 | . . . . . . . . 9 |
29 | elfzle1 9962 | . . . . . . . . . . 11 | |
30 | 29 | ad2antlr 481 | . . . . . . . . . 10 |
31 | zleloe 9238 | . . . . . . . . . . 11 | |
32 | 21, 15, 31 | syl2anc 409 | . . . . . . . . . 10 |
33 | 30, 32 | mpbid 146 | . . . . . . . . 9 |
34 | 28, 33 | ecased 1339 | . . . . . . . 8 |
35 | zltlem1 9248 | . . . . . . . . 9 | |
36 | 21, 15, 35 | syl2anc 409 | . . . . . . . 8 |
37 | 34, 36 | mpbid 146 | . . . . . . 7 |
38 | 19, 22, 23, 25, 37 | letrd 8022 | . . . . . 6 |
39 | 15 | zred 9313 | . . . . . . 7 |
40 | 11 | zred 9313 | . . . . . . 7 |
41 | 39 | lem1d 8828 | . . . . . . 7 |
42 | 12 | ad2antrr 480 | . . . . . . . 8 |
43 | elfzle2 9963 | . . . . . . . 8 | |
44 | 42, 43 | syl 14 | . . . . . . 7 |
45 | 23, 39, 40, 41, 44 | letrd 8022 | . . . . . 6 |
46 | 38, 45 | jca 304 | . . . . 5 |
47 | elfz2 9951 | . . . . 5 | |
48 | 18, 46, 47 | sylanbrc 414 | . . . 4 |
49 | 6, 48 | ffvelrnd 5621 | . . 3 |
50 | 1, 20 | syl 14 | . . . . 5 |
51 | zdceq 9266 | . . . . 5 DECID | |
52 | 14, 50, 51 | syl2anc 409 | . . . 4 DECID |
53 | 52 | adantr 274 | . . 3 DECID |
54 | 2, 49, 53 | ifcldadc 3549 | . 2 |
55 | 5, 12 | ffvelrnd 5621 | . . 3 |
56 | 55 | adantr 274 | . 2 |
57 | f1ocnv 5445 | . . . . . 6 | |
58 | f1of 5432 | . . . . . 6 | |
59 | 3, 57, 58 | 3syl 17 | . . . . 5 |
60 | 59, 1 | ffvelrnd 5621 | . . . 4 |
61 | elfzelz 9960 | . . . 4 | |
62 | 60, 61 | syl 14 | . . 3 |
63 | fzdcel 9975 | . . 3 DECID | |
64 | 14, 50, 62, 63 | syl3anc 1228 | . 2 DECID |
65 | 54, 56, 64 | ifcldadc 3549 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 DECID wdc 824 w3a 968 wceq 1343 wcel 2136 cif 3520 class class class wbr 3982 ccnv 4603 wf 5184 wf1o 5187 cfv 5188 (class class class)co 5842 c1 7754 clt 7933 cle 7934 cmin 8069 cz 9191 cfz 9944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-n0 9115 df-z 9192 df-uz 9467 df-fz 9945 |
This theorem is referenced by: iseqf1olemqval 10422 iseqf1olemqf 10426 |
Copyright terms: Public domain | W3C validator |