Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iseqf1olemqcl | Unicode version |
Description: Lemma for seq3f1o 10381. (Contributed by Jim Kingdon, 27-Aug-2022.) |
Ref | Expression |
---|---|
iseqf1olemqcl.k | |
iseqf1olemqcl.j | |
iseqf1olemqcl.a |
Ref | Expression |
---|---|
iseqf1olemqcl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iseqf1olemqcl.k | . . . 4 | |
2 | 1 | ad2antrr 480 | . . 3 |
3 | iseqf1olemqcl.j | . . . . . 6 | |
4 | f1of 5407 | . . . . . 6 | |
5 | 3, 4 | syl 14 | . . . . 5 |
6 | 5 | ad2antrr 480 | . . . 4 |
7 | 1 | ad2antrr 480 | . . . . . . 7 |
8 | elfzel1 9905 | . . . . . . 7 | |
9 | 7, 8 | syl 14 | . . . . . 6 |
10 | elfzel2 9904 | . . . . . . 7 | |
11 | 7, 10 | syl 14 | . . . . . 6 |
12 | iseqf1olemqcl.a | . . . . . . . . 9 | |
13 | elfzelz 9906 | . . . . . . . . 9 | |
14 | 12, 13 | syl 14 | . . . . . . . 8 |
15 | 14 | ad2antrr 480 | . . . . . . 7 |
16 | peano2zm 9184 | . . . . . . 7 | |
17 | 15, 16 | syl 14 | . . . . . 6 |
18 | 9, 11, 17 | 3jca 1162 | . . . . 5 |
19 | 9 | zred 9265 | . . . . . . 7 |
20 | elfzelz 9906 | . . . . . . . . 9 | |
21 | 7, 20 | syl 14 | . . . . . . . 8 |
22 | 21 | zred 9265 | . . . . . . 7 |
23 | 17 | zred 9265 | . . . . . . 7 |
24 | elfzle1 9907 | . . . . . . . 8 | |
25 | 7, 24 | syl 14 | . . . . . . 7 |
26 | simpr 109 | . . . . . . . . . 10 | |
27 | eqcom 2156 | . . . . . . . . . 10 | |
28 | 26, 27 | sylnib 666 | . . . . . . . . 9 |
29 | elfzle1 9907 | . . . . . . . . . . 11 | |
30 | 29 | ad2antlr 481 | . . . . . . . . . 10 |
31 | zleloe 9193 | . . . . . . . . . . 11 | |
32 | 21, 15, 31 | syl2anc 409 | . . . . . . . . . 10 |
33 | 30, 32 | mpbid 146 | . . . . . . . . 9 |
34 | 28, 33 | ecased 1328 | . . . . . . . 8 |
35 | zltlem1 9203 | . . . . . . . . 9 | |
36 | 21, 15, 35 | syl2anc 409 | . . . . . . . 8 |
37 | 34, 36 | mpbid 146 | . . . . . . 7 |
38 | 19, 22, 23, 25, 37 | letrd 7978 | . . . . . 6 |
39 | 15 | zred 9265 | . . . . . . 7 |
40 | 11 | zred 9265 | . . . . . . 7 |
41 | 39 | lem1d 8783 | . . . . . . 7 |
42 | 12 | ad2antrr 480 | . . . . . . . 8 |
43 | elfzle2 9908 | . . . . . . . 8 | |
44 | 42, 43 | syl 14 | . . . . . . 7 |
45 | 23, 39, 40, 41, 44 | letrd 7978 | . . . . . 6 |
46 | 38, 45 | jca 304 | . . . . 5 |
47 | elfz2 9897 | . . . . 5 | |
48 | 18, 46, 47 | sylanbrc 414 | . . . 4 |
49 | 6, 48 | ffvelrnd 5596 | . . 3 |
50 | 1, 20 | syl 14 | . . . . 5 |
51 | zdceq 9218 | . . . . 5 DECID | |
52 | 14, 50, 51 | syl2anc 409 | . . . 4 DECID |
53 | 52 | adantr 274 | . . 3 DECID |
54 | 2, 49, 53 | ifcldadc 3530 | . 2 |
55 | 5, 12 | ffvelrnd 5596 | . . 3 |
56 | 55 | adantr 274 | . 2 |
57 | f1ocnv 5420 | . . . . . 6 | |
58 | f1of 5407 | . . . . . 6 | |
59 | 3, 57, 58 | 3syl 17 | . . . . 5 |
60 | 59, 1 | ffvelrnd 5596 | . . . 4 |
61 | elfzelz 9906 | . . . 4 | |
62 | 60, 61 | syl 14 | . . 3 |
63 | fzdcel 9920 | . . 3 DECID | |
64 | 14, 50, 62, 63 | syl3anc 1217 | . 2 DECID |
65 | 54, 56, 64 | ifcldadc 3530 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 DECID wdc 820 w3a 963 wceq 1332 wcel 2125 cif 3501 class class class wbr 3961 ccnv 4578 wf 5159 wf1o 5162 cfv 5163 (class class class)co 5814 c1 7712 clt 7891 cle 7892 cmin 8025 cz 9146 cfz 9890 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 ax-un 4388 ax-setind 4490 ax-cnex 7802 ax-resscn 7803 ax-1cn 7804 ax-1re 7805 ax-icn 7806 ax-addcl 7807 ax-addrcl 7808 ax-mulcl 7809 ax-addcom 7811 ax-addass 7813 ax-distr 7815 ax-i2m1 7816 ax-0lt1 7817 ax-0id 7819 ax-rnegex 7820 ax-cnre 7822 ax-pre-ltirr 7823 ax-pre-ltwlin 7824 ax-pre-lttrn 7825 ax-pre-ltadd 7827 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-nel 2420 df-ral 2437 df-rex 2438 df-reu 2439 df-rab 2441 df-v 2711 df-sbc 2934 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-if 3502 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-int 3804 df-br 3962 df-opab 4022 df-mpt 4023 df-id 4248 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-rn 4590 df-res 4591 df-ima 4592 df-iota 5128 df-fun 5165 df-fn 5166 df-f 5167 df-f1 5168 df-fo 5169 df-f1o 5170 df-fv 5171 df-riota 5770 df-ov 5817 df-oprab 5818 df-mpo 5819 df-pnf 7893 df-mnf 7894 df-xr 7895 df-ltxr 7896 df-le 7897 df-sub 8027 df-neg 8028 df-inn 8813 df-n0 9070 df-z 9147 df-uz 9419 df-fz 9891 |
This theorem is referenced by: iseqf1olemqval 10364 iseqf1olemqf 10368 |
Copyright terms: Public domain | W3C validator |