ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqf1olemqcl Unicode version

Theorem iseqf1olemqcl 10573
Description: Lemma for seq3f1o 10591. (Contributed by Jim Kingdon, 27-Aug-2022.)
Hypotheses
Ref Expression
iseqf1olemqcl.k  |-  ( ph  ->  K  e.  ( M ... N ) )
iseqf1olemqcl.j  |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )
iseqf1olemqcl.a  |-  ( ph  ->  A  e.  ( M ... N ) )
Assertion
Ref Expression
iseqf1olemqcl  |-  ( ph  ->  if ( A  e.  ( K ... ( `' J `  K ) ) ,  if ( A  =  K ,  K ,  ( J `  ( A  -  1 ) ) ) ,  ( J `  A
) )  e.  ( M ... N ) )

Proof of Theorem iseqf1olemqcl
StepHypRef Expression
1 iseqf1olemqcl.k . . . 4  |-  ( ph  ->  K  e.  ( M ... N ) )
21ad2antrr 488 . . 3  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  A  =  K )  ->  K  e.  ( M ... N
) )
3 iseqf1olemqcl.j . . . . . 6  |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )
4 f1of 5501 . . . . . 6  |-  ( J : ( M ... N ) -1-1-onto-> ( M ... N
)  ->  J :
( M ... N
) --> ( M ... N ) )
53, 4syl 14 . . . . 5  |-  ( ph  ->  J : ( M ... N ) --> ( M ... N ) )
65ad2antrr 488 . . . 4  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  J : ( M ... N ) --> ( M ... N ) )
71ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  K  e.  ( M ... N ) )
8 elfzel1 10093 . . . . . . 7  |-  ( K  e.  ( M ... N )  ->  M  e.  ZZ )
97, 8syl 14 . . . . . 6  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  M  e.  ZZ )
10 elfzel2 10092 . . . . . . 7  |-  ( K  e.  ( M ... N )  ->  N  e.  ZZ )
117, 10syl 14 . . . . . 6  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  N  e.  ZZ )
12 iseqf1olemqcl.a . . . . . . . . 9  |-  ( ph  ->  A  e.  ( M ... N ) )
13 elfzelz 10094 . . . . . . . . 9  |-  ( A  e.  ( M ... N )  ->  A  e.  ZZ )
1412, 13syl 14 . . . . . . . 8  |-  ( ph  ->  A  e.  ZZ )
1514ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  A  e.  ZZ )
16 peano2zm 9358 . . . . . . 7  |-  ( A  e.  ZZ  ->  ( A  -  1 )  e.  ZZ )
1715, 16syl 14 . . . . . 6  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  ( A  -  1 )  e.  ZZ )
189, 11, 173jca 1179 . . . . 5  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( A  -  1
)  e.  ZZ ) )
199zred 9442 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  M  e.  RR )
20 elfzelz 10094 . . . . . . . . 9  |-  ( K  e.  ( M ... N )  ->  K  e.  ZZ )
217, 20syl 14 . . . . . . . 8  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  K  e.  ZZ )
2221zred 9442 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  K  e.  RR )
2317zred 9442 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  ( A  -  1 )  e.  RR )
24 elfzle1 10096 . . . . . . . 8  |-  ( K  e.  ( M ... N )  ->  M  <_  K )
257, 24syl 14 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  M  <_  K )
26 simpr 110 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  -.  A  =  K )
27 eqcom 2195 . . . . . . . . . 10  |-  ( A  =  K  <->  K  =  A )
2826, 27sylnib 677 . . . . . . . . 9  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  -.  K  =  A )
29 elfzle1 10096 . . . . . . . . . . 11  |-  ( A  e.  ( K ... ( `' J `  K ) )  ->  K  <_  A )
3029ad2antlr 489 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  K  <_  A )
31 zleloe 9367 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  A  e.  ZZ )  ->  ( K  <_  A  <->  ( K  <  A  \/  K  =  A )
) )
3221, 15, 31syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  ( K  <_  A  <->  ( K  <  A  \/  K  =  A )
) )
3330, 32mpbid 147 . . . . . . . . 9  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  ( K  <  A  \/  K  =  A
) )
3428, 33ecased 1360 . . . . . . . 8  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  K  <  A )
35 zltlem1 9377 . . . . . . . . 9  |-  ( ( K  e.  ZZ  /\  A  e.  ZZ )  ->  ( K  <  A  <->  K  <_  ( A  - 
1 ) ) )
3621, 15, 35syl2anc 411 . . . . . . . 8  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  ( K  <  A  <->  K  <_  ( A  - 
1 ) ) )
3734, 36mpbid 147 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  K  <_  ( A  -  1 ) )
3819, 22, 23, 25, 37letrd 8145 . . . . . 6  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  M  <_  ( A  -  1 ) )
3915zred 9442 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  A  e.  RR )
4011zred 9442 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  N  e.  RR )
4139lem1d 8954 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  ( A  -  1 )  <_  A )
4212ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  A  e.  ( M ... N ) )
43 elfzle2 10097 . . . . . . . 8  |-  ( A  e.  ( M ... N )  ->  A  <_  N )
4442, 43syl 14 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  A  <_  N )
4523, 39, 40, 41, 44letrd 8145 . . . . . 6  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  ( A  -  1 )  <_  N )
4638, 45jca 306 . . . . 5  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  ( M  <_  ( A  -  1 )  /\  ( A  - 
1 )  <_  N
) )
47 elfz2 10084 . . . . 5  |-  ( ( A  -  1 )  e.  ( M ... N )  <->  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( A  -  1 )  e.  ZZ )  /\  ( M  <_  ( A  - 
1 )  /\  ( A  -  1 )  <_  N ) ) )
4818, 46, 47sylanbrc 417 . . . 4  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  ( A  -  1 )  e.  ( M ... N ) )
496, 48ffvelcdmd 5695 . . 3  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  ( J `  ( A  -  1 ) )  e.  ( M ... N ) )
501, 20syl 14 . . . . 5  |-  ( ph  ->  K  e.  ZZ )
51 zdceq 9395 . . . . 5  |-  ( ( A  e.  ZZ  /\  K  e.  ZZ )  -> DECID  A  =  K )
5214, 50, 51syl2anc 411 . . . 4  |-  ( ph  -> DECID  A  =  K )
5352adantr 276 . . 3  |-  ( (
ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  -> DECID  A  =  K
)
542, 49, 53ifcldadc 3587 . 2  |-  ( (
ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  ->  if ( A  =  K ,  K ,  ( J `
 ( A  - 
1 ) ) )  e.  ( M ... N ) )
555, 12ffvelcdmd 5695 . . 3  |-  ( ph  ->  ( J `  A
)  e.  ( M ... N ) )
5655adantr 276 . 2  |-  ( (
ph  /\  -.  A  e.  ( K ... ( `' J `  K ) ) )  ->  ( J `  A )  e.  ( M ... N
) )
57 f1ocnv 5514 . . . . . 6  |-  ( J : ( M ... N ) -1-1-onto-> ( M ... N
)  ->  `' J : ( M ... N ) -1-1-onto-> ( M ... N
) )
58 f1of 5501 . . . . . 6  |-  ( `' J : ( M ... N ) -1-1-onto-> ( M ... N )  ->  `' J : ( M ... N ) --> ( M ... N ) )
593, 57, 583syl 17 . . . . 5  |-  ( ph  ->  `' J : ( M ... N ) --> ( M ... N ) )
6059, 1ffvelcdmd 5695 . . . 4  |-  ( ph  ->  ( `' J `  K )  e.  ( M ... N ) )
61 elfzelz 10094 . . . 4  |-  ( ( `' J `  K )  e.  ( M ... N )  ->  ( `' J `  K )  e.  ZZ )
6260, 61syl 14 . . 3  |-  ( ph  ->  ( `' J `  K )  e.  ZZ )
63 fzdcel 10109 . . 3  |-  ( ( A  e.  ZZ  /\  K  e.  ZZ  /\  ( `' J `  K )  e.  ZZ )  -> DECID  A  e.  ( K ... ( `' J `  K ) ) )
6414, 50, 62, 63syl3anc 1249 . 2  |-  ( ph  -> DECID  A  e.  ( K ... ( `' J `  K ) ) )
6554, 56, 64ifcldadc 3587 1  |-  ( ph  ->  if ( A  e.  ( K ... ( `' J `  K ) ) ,  if ( A  =  K ,  K ,  ( J `  ( A  -  1 ) ) ) ,  ( J `  A
) )  e.  ( M ... N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    /\ w3a 980    = wceq 1364    e. wcel 2164   ifcif 3558   class class class wbr 4030   `'ccnv 4659   -->wf 5251   -1-1-onto->wf1o 5254   ` cfv 5255  (class class class)co 5919   1c1 7875    < clt 8056    <_ cle 8057    - cmin 8192   ZZcz 9320   ...cfz 10077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-n0 9244  df-z 9321  df-uz 9596  df-fz 10078
This theorem is referenced by:  iseqf1olemqval  10574  iseqf1olemqf  10578
  Copyright terms: Public domain W3C validator