ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqf1olemqcl Unicode version

Theorem iseqf1olemqcl 10442
Description: Lemma for seq3f1o 10460. (Contributed by Jim Kingdon, 27-Aug-2022.)
Hypotheses
Ref Expression
iseqf1olemqcl.k  |-  ( ph  ->  K  e.  ( M ... N ) )
iseqf1olemqcl.j  |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )
iseqf1olemqcl.a  |-  ( ph  ->  A  e.  ( M ... N ) )
Assertion
Ref Expression
iseqf1olemqcl  |-  ( ph  ->  if ( A  e.  ( K ... ( `' J `  K ) ) ,  if ( A  =  K ,  K ,  ( J `  ( A  -  1 ) ) ) ,  ( J `  A
) )  e.  ( M ... N ) )

Proof of Theorem iseqf1olemqcl
StepHypRef Expression
1 iseqf1olemqcl.k . . . 4  |-  ( ph  ->  K  e.  ( M ... N ) )
21ad2antrr 485 . . 3  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  A  =  K )  ->  K  e.  ( M ... N
) )
3 iseqf1olemqcl.j . . . . . 6  |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )
4 f1of 5442 . . . . . 6  |-  ( J : ( M ... N ) -1-1-onto-> ( M ... N
)  ->  J :
( M ... N
) --> ( M ... N ) )
53, 4syl 14 . . . . 5  |-  ( ph  ->  J : ( M ... N ) --> ( M ... N ) )
65ad2antrr 485 . . . 4  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  J : ( M ... N ) --> ( M ... N ) )
71ad2antrr 485 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  K  e.  ( M ... N ) )
8 elfzel1 9980 . . . . . . 7  |-  ( K  e.  ( M ... N )  ->  M  e.  ZZ )
97, 8syl 14 . . . . . 6  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  M  e.  ZZ )
10 elfzel2 9979 . . . . . . 7  |-  ( K  e.  ( M ... N )  ->  N  e.  ZZ )
117, 10syl 14 . . . . . 6  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  N  e.  ZZ )
12 iseqf1olemqcl.a . . . . . . . . 9  |-  ( ph  ->  A  e.  ( M ... N ) )
13 elfzelz 9981 . . . . . . . . 9  |-  ( A  e.  ( M ... N )  ->  A  e.  ZZ )
1412, 13syl 14 . . . . . . . 8  |-  ( ph  ->  A  e.  ZZ )
1514ad2antrr 485 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  A  e.  ZZ )
16 peano2zm 9250 . . . . . . 7  |-  ( A  e.  ZZ  ->  ( A  -  1 )  e.  ZZ )
1715, 16syl 14 . . . . . 6  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  ( A  -  1 )  e.  ZZ )
189, 11, 173jca 1172 . . . . 5  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( A  -  1
)  e.  ZZ ) )
199zred 9334 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  M  e.  RR )
20 elfzelz 9981 . . . . . . . . 9  |-  ( K  e.  ( M ... N )  ->  K  e.  ZZ )
217, 20syl 14 . . . . . . . 8  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  K  e.  ZZ )
2221zred 9334 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  K  e.  RR )
2317zred 9334 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  ( A  -  1 )  e.  RR )
24 elfzle1 9983 . . . . . . . 8  |-  ( K  e.  ( M ... N )  ->  M  <_  K )
257, 24syl 14 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  M  <_  K )
26 simpr 109 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  -.  A  =  K )
27 eqcom 2172 . . . . . . . . . 10  |-  ( A  =  K  <->  K  =  A )
2826, 27sylnib 671 . . . . . . . . 9  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  -.  K  =  A )
29 elfzle1 9983 . . . . . . . . . . 11  |-  ( A  e.  ( K ... ( `' J `  K ) )  ->  K  <_  A )
3029ad2antlr 486 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  K  <_  A )
31 zleloe 9259 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  A  e.  ZZ )  ->  ( K  <_  A  <->  ( K  <  A  \/  K  =  A )
) )
3221, 15, 31syl2anc 409 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  ( K  <_  A  <->  ( K  <  A  \/  K  =  A )
) )
3330, 32mpbid 146 . . . . . . . . 9  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  ( K  <  A  \/  K  =  A
) )
3428, 33ecased 1344 . . . . . . . 8  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  K  <  A )
35 zltlem1 9269 . . . . . . . . 9  |-  ( ( K  e.  ZZ  /\  A  e.  ZZ )  ->  ( K  <  A  <->  K  <_  ( A  - 
1 ) ) )
3621, 15, 35syl2anc 409 . . . . . . . 8  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  ( K  <  A  <->  K  <_  ( A  - 
1 ) ) )
3734, 36mpbid 146 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  K  <_  ( A  -  1 ) )
3819, 22, 23, 25, 37letrd 8043 . . . . . 6  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  M  <_  ( A  -  1 ) )
3915zred 9334 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  A  e.  RR )
4011zred 9334 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  N  e.  RR )
4139lem1d 8849 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  ( A  -  1 )  <_  A )
4212ad2antrr 485 . . . . . . . 8  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  A  e.  ( M ... N ) )
43 elfzle2 9984 . . . . . . . 8  |-  ( A  e.  ( M ... N )  ->  A  <_  N )
4442, 43syl 14 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  A  <_  N )
4523, 39, 40, 41, 44letrd 8043 . . . . . 6  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  ( A  -  1 )  <_  N )
4638, 45jca 304 . . . . 5  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  ( M  <_  ( A  -  1 )  /\  ( A  - 
1 )  <_  N
) )
47 elfz2 9972 . . . . 5  |-  ( ( A  -  1 )  e.  ( M ... N )  <->  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( A  -  1 )  e.  ZZ )  /\  ( M  <_  ( A  - 
1 )  /\  ( A  -  1 )  <_  N ) ) )
4818, 46, 47sylanbrc 415 . . . 4  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  ( A  -  1 )  e.  ( M ... N ) )
496, 48ffvelrnd 5632 . . 3  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  A  =  K )  ->  ( J `  ( A  -  1 ) )  e.  ( M ... N ) )
501, 20syl 14 . . . . 5  |-  ( ph  ->  K  e.  ZZ )
51 zdceq 9287 . . . . 5  |-  ( ( A  e.  ZZ  /\  K  e.  ZZ )  -> DECID  A  =  K )
5214, 50, 51syl2anc 409 . . . 4  |-  ( ph  -> DECID  A  =  K )
5352adantr 274 . . 3  |-  ( (
ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  -> DECID  A  =  K
)
542, 49, 53ifcldadc 3555 . 2  |-  ( (
ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  ->  if ( A  =  K ,  K ,  ( J `
 ( A  - 
1 ) ) )  e.  ( M ... N ) )
555, 12ffvelrnd 5632 . . 3  |-  ( ph  ->  ( J `  A
)  e.  ( M ... N ) )
5655adantr 274 . 2  |-  ( (
ph  /\  -.  A  e.  ( K ... ( `' J `  K ) ) )  ->  ( J `  A )  e.  ( M ... N
) )
57 f1ocnv 5455 . . . . . 6  |-  ( J : ( M ... N ) -1-1-onto-> ( M ... N
)  ->  `' J : ( M ... N ) -1-1-onto-> ( M ... N
) )
58 f1of 5442 . . . . . 6  |-  ( `' J : ( M ... N ) -1-1-onto-> ( M ... N )  ->  `' J : ( M ... N ) --> ( M ... N ) )
593, 57, 583syl 17 . . . . 5  |-  ( ph  ->  `' J : ( M ... N ) --> ( M ... N ) )
6059, 1ffvelrnd 5632 . . . 4  |-  ( ph  ->  ( `' J `  K )  e.  ( M ... N ) )
61 elfzelz 9981 . . . 4  |-  ( ( `' J `  K )  e.  ( M ... N )  ->  ( `' J `  K )  e.  ZZ )
6260, 61syl 14 . . 3  |-  ( ph  ->  ( `' J `  K )  e.  ZZ )
63 fzdcel 9996 . . 3  |-  ( ( A  e.  ZZ  /\  K  e.  ZZ  /\  ( `' J `  K )  e.  ZZ )  -> DECID  A  e.  ( K ... ( `' J `  K ) ) )
6414, 50, 62, 63syl3anc 1233 . 2  |-  ( ph  -> DECID  A  e.  ( K ... ( `' J `  K ) ) )
6554, 56, 64ifcldadc 3555 1  |-  ( ph  ->  if ( A  e.  ( K ... ( `' J `  K ) ) ,  if ( A  =  K ,  K ,  ( J `  ( A  -  1 ) ) ) ,  ( J `  A
) )  e.  ( M ... N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703  DECID wdc 829    /\ w3a 973    = wceq 1348    e. wcel 2141   ifcif 3526   class class class wbr 3989   `'ccnv 4610   -->wf 5194   -1-1-onto->wf1o 5197   ` cfv 5198  (class class class)co 5853   1c1 7775    < clt 7954    <_ cle 7955    - cmin 8090   ZZcz 9212   ...cfz 9965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-fz 9966
This theorem is referenced by:  iseqf1olemqval  10443  iseqf1olemqf  10447
  Copyright terms: Public domain W3C validator