ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzneuz Unicode version

Theorem fzneuz 10036
Description: No finite set of sequential integers equals an upper set of integers. (Contributed by NM, 11-Dec-2005.)
Assertion
Ref Expression
fzneuz  |-  ( ( N  e.  ( ZZ>= `  M )  /\  K  e.  ZZ )  ->  -.  ( M ... N )  =  ( ZZ>= `  K
) )

Proof of Theorem fzneuz
StepHypRef Expression
1 peano2uz 9521 . . . . 5  |-  ( N  e.  ( ZZ>= `  K
)  ->  ( N  +  1 )  e.  ( ZZ>= `  K )
)
21adantl 275 . . . 4  |-  ( ( ( N  e.  (
ZZ>= `  M )  /\  K  e.  ZZ )  /\  N  e.  ( ZZ>=
`  K ) )  ->  ( N  + 
1 )  e.  (
ZZ>= `  K ) )
3 eluzelz 9475 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
4 zre 9195 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  N  e.  RR )
54ltp1d 8825 . . . . . . . 8  |-  ( N  e.  ZZ  ->  N  <  ( N  +  1 ) )
6 peano2z 9227 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  ( N  +  1 )  e.  ZZ )
7 zltnle 9237 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  ( N  +  1
)  e.  ZZ )  ->  ( N  < 
( N  +  1 )  <->  -.  ( N  +  1 )  <_  N ) )
86, 7mpdan 418 . . . . . . . 8  |-  ( N  e.  ZZ  ->  ( N  <  ( N  + 
1 )  <->  -.  ( N  +  1 )  <_  N ) )
95, 8mpbid 146 . . . . . . 7  |-  ( N  e.  ZZ  ->  -.  ( N  +  1
)  <_  N )
103, 9syl 14 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  -.  ( N  +  1 )  <_  N )
11 elfzle2 9963 . . . . . 6  |-  ( ( N  +  1 )  e.  ( M ... N )  ->  ( N  +  1 )  <_  N )
1210, 11nsyl 618 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  -.  ( N  +  1 )  e.  ( M ... N ) )
1312ad2antrr 480 . . . 4  |-  ( ( ( N  e.  (
ZZ>= `  M )  /\  K  e.  ZZ )  /\  N  e.  ( ZZ>=
`  K ) )  ->  -.  ( N  +  1 )  e.  ( M ... N
) )
14 nelneq2 2268 . . . 4  |-  ( ( ( N  +  1 )  e.  ( ZZ>= `  K )  /\  -.  ( N  +  1
)  e.  ( M ... N ) )  ->  -.  ( ZZ>= `  K )  =  ( M ... N ) )
152, 13, 14syl2anc 409 . . 3  |-  ( ( ( N  e.  (
ZZ>= `  M )  /\  K  e.  ZZ )  /\  N  e.  ( ZZ>=
`  K ) )  ->  -.  ( ZZ>= `  K )  =  ( M ... N ) )
16 eqcom 2167 . . 3  |-  ( (
ZZ>= `  K )  =  ( M ... N
)  <->  ( M ... N )  =  (
ZZ>= `  K ) )
1715, 16sylnib 666 . 2  |-  ( ( ( N  e.  (
ZZ>= `  M )  /\  K  e.  ZZ )  /\  N  e.  ( ZZ>=
`  K ) )  ->  -.  ( M ... N )  =  (
ZZ>= `  K ) )
18 eluzfz2 9967 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
1918ad2antrr 480 . . 3  |-  ( ( ( N  e.  (
ZZ>= `  M )  /\  K  e.  ZZ )  /\  -.  N  e.  (
ZZ>= `  K ) )  ->  N  e.  ( M ... N ) )
20 nelneq2 2268 . . 3  |-  ( ( N  e.  ( M ... N )  /\  -.  N  e.  ( ZZ>=
`  K ) )  ->  -.  ( M ... N )  =  (
ZZ>= `  K ) )
2119, 20sylancom 417 . 2  |-  ( ( ( N  e.  (
ZZ>= `  M )  /\  K  e.  ZZ )  /\  -.  N  e.  (
ZZ>= `  K ) )  ->  -.  ( M ... N )  =  (
ZZ>= `  K ) )
22 simpr 109 . . . 4  |-  ( ( N  e.  ( ZZ>= `  M )  /\  K  e.  ZZ )  ->  K  e.  ZZ )
233adantr 274 . . . 4  |-  ( ( N  e.  ( ZZ>= `  M )  /\  K  e.  ZZ )  ->  N  e.  ZZ )
24 eluzdc 9548 . . . 4  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ )  -> DECID  N  e.  ( ZZ>= `  K
) )
2522, 23, 24syl2anc 409 . . 3  |-  ( ( N  e.  ( ZZ>= `  M )  /\  K  e.  ZZ )  -> DECID  N  e.  ( ZZ>=
`  K ) )
26 df-dc 825 . . 3  |-  (DECID  N  e.  ( ZZ>= `  K )  <->  ( N  e.  ( ZZ>= `  K )  \/  -.  N  e.  ( ZZ>= `  K ) ) )
2725, 26sylib 121 . 2  |-  ( ( N  e.  ( ZZ>= `  M )  /\  K  e.  ZZ )  ->  ( N  e.  ( ZZ>= `  K )  \/  -.  N  e.  ( ZZ>= `  K ) ) )
2817, 21, 27mpjaodan 788 1  |-  ( ( N  e.  ( ZZ>= `  M )  /\  K  e.  ZZ )  ->  -.  ( M ... N )  =  ( ZZ>= `  K
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698  DECID wdc 824    = wceq 1343    e. wcel 2136   class class class wbr 3982   ` cfv 5188  (class class class)co 5842   1c1 7754    + caddc 7756    < clt 7933    <_ cle 7934   ZZcz 9191   ZZ>=cuz 9466   ...cfz 9944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-fz 9945
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator