ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzneuz Unicode version

Theorem fzneuz 9874
Description: No finite set of sequential integers equals an upper set of integers. (Contributed by NM, 11-Dec-2005.)
Assertion
Ref Expression
fzneuz  |-  ( ( N  e.  ( ZZ>= `  M )  /\  K  e.  ZZ )  ->  -.  ( M ... N )  =  ( ZZ>= `  K
) )

Proof of Theorem fzneuz
StepHypRef Expression
1 peano2uz 9371 . . . . 5  |-  ( N  e.  ( ZZ>= `  K
)  ->  ( N  +  1 )  e.  ( ZZ>= `  K )
)
21adantl 275 . . . 4  |-  ( ( ( N  e.  (
ZZ>= `  M )  /\  K  e.  ZZ )  /\  N  e.  ( ZZ>=
`  K ) )  ->  ( N  + 
1 )  e.  (
ZZ>= `  K ) )
3 eluzelz 9328 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
4 zre 9051 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  N  e.  RR )
54ltp1d 8681 . . . . . . . 8  |-  ( N  e.  ZZ  ->  N  <  ( N  +  1 ) )
6 peano2z 9083 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  ( N  +  1 )  e.  ZZ )
7 zltnle 9093 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  ( N  +  1
)  e.  ZZ )  ->  ( N  < 
( N  +  1 )  <->  -.  ( N  +  1 )  <_  N ) )
86, 7mpdan 417 . . . . . . . 8  |-  ( N  e.  ZZ  ->  ( N  <  ( N  + 
1 )  <->  -.  ( N  +  1 )  <_  N ) )
95, 8mpbid 146 . . . . . . 7  |-  ( N  e.  ZZ  ->  -.  ( N  +  1
)  <_  N )
103, 9syl 14 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  -.  ( N  +  1 )  <_  N )
11 elfzle2 9801 . . . . . 6  |-  ( ( N  +  1 )  e.  ( M ... N )  ->  ( N  +  1 )  <_  N )
1210, 11nsyl 617 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  -.  ( N  +  1 )  e.  ( M ... N ) )
1312ad2antrr 479 . . . 4  |-  ( ( ( N  e.  (
ZZ>= `  M )  /\  K  e.  ZZ )  /\  N  e.  ( ZZ>=
`  K ) )  ->  -.  ( N  +  1 )  e.  ( M ... N
) )
14 nelneq2 2239 . . . 4  |-  ( ( ( N  +  1 )  e.  ( ZZ>= `  K )  /\  -.  ( N  +  1
)  e.  ( M ... N ) )  ->  -.  ( ZZ>= `  K )  =  ( M ... N ) )
152, 13, 14syl2anc 408 . . 3  |-  ( ( ( N  e.  (
ZZ>= `  M )  /\  K  e.  ZZ )  /\  N  e.  ( ZZ>=
`  K ) )  ->  -.  ( ZZ>= `  K )  =  ( M ... N ) )
16 eqcom 2139 . . 3  |-  ( (
ZZ>= `  K )  =  ( M ... N
)  <->  ( M ... N )  =  (
ZZ>= `  K ) )
1715, 16sylnib 665 . 2  |-  ( ( ( N  e.  (
ZZ>= `  M )  /\  K  e.  ZZ )  /\  N  e.  ( ZZ>=
`  K ) )  ->  -.  ( M ... N )  =  (
ZZ>= `  K ) )
18 eluzfz2 9805 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
1918ad2antrr 479 . . 3  |-  ( ( ( N  e.  (
ZZ>= `  M )  /\  K  e.  ZZ )  /\  -.  N  e.  (
ZZ>= `  K ) )  ->  N  e.  ( M ... N ) )
20 nelneq2 2239 . . 3  |-  ( ( N  e.  ( M ... N )  /\  -.  N  e.  ( ZZ>=
`  K ) )  ->  -.  ( M ... N )  =  (
ZZ>= `  K ) )
2119, 20sylancom 416 . 2  |-  ( ( ( N  e.  (
ZZ>= `  M )  /\  K  e.  ZZ )  /\  -.  N  e.  (
ZZ>= `  K ) )  ->  -.  ( M ... N )  =  (
ZZ>= `  K ) )
22 simpr 109 . . . 4  |-  ( ( N  e.  ( ZZ>= `  M )  /\  K  e.  ZZ )  ->  K  e.  ZZ )
233adantr 274 . . . 4  |-  ( ( N  e.  ( ZZ>= `  M )  /\  K  e.  ZZ )  ->  N  e.  ZZ )
24 eluzdc 9397 . . . 4  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ )  -> DECID  N  e.  ( ZZ>= `  K
) )
2522, 23, 24syl2anc 408 . . 3  |-  ( ( N  e.  ( ZZ>= `  M )  /\  K  e.  ZZ )  -> DECID  N  e.  ( ZZ>=
`  K ) )
26 df-dc 820 . . 3  |-  (DECID  N  e.  ( ZZ>= `  K )  <->  ( N  e.  ( ZZ>= `  K )  \/  -.  N  e.  ( ZZ>= `  K ) ) )
2725, 26sylib 121 . 2  |-  ( ( N  e.  ( ZZ>= `  M )  /\  K  e.  ZZ )  ->  ( N  e.  ( ZZ>= `  K )  \/  -.  N  e.  ( ZZ>= `  K ) ) )
2817, 21, 27mpjaodan 787 1  |-  ( ( N  e.  ( ZZ>= `  M )  /\  K  e.  ZZ )  ->  -.  ( M ... N )  =  ( ZZ>= `  K
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697  DECID wdc 819    = wceq 1331    e. wcel 1480   class class class wbr 3924   ` cfv 5118  (class class class)co 5767   1c1 7614    + caddc 7616    < clt 7793    <_ cle 7794   ZZcz 9047   ZZ>=cuz 9319   ...cfz 9783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-addcom 7713  ax-addass 7715  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-0id 7721  ax-rnegex 7722  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-ltadd 7729
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-inn 8714  df-n0 8971  df-z 9048  df-uz 9320  df-fz 9784
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator