| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caucvgprprlemnbj | Unicode version | ||
| Description: Lemma for caucvgprpr 7895. Non-existence of two elements of the sequence which are too far from each other. (Contributed by Jim Kingdon, 17-Jun-2021.) |
| Ref | Expression |
|---|---|
| caucvgprpr.f |
|
| caucvgprpr.cau |
|
| caucvgprprlemnbj.b |
|
| caucvgprprlemnbj.j |
|
| Ref | Expression |
|---|---|
| caucvgprprlemnbj |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caucvgprpr.f |
. . . . . . 7
| |
| 2 | caucvgprpr.cau |
. . . . . . 7
| |
| 3 | 1, 2 | caucvgprprlemval 7871 |
. . . . . 6
|
| 4 | 3 | simprd 114 |
. . . . 5
|
| 5 | caucvgprprlemnbj.b |
. . . . . . . . 9
| |
| 6 | 1, 5 | ffvelcdmd 5770 |
. . . . . . . 8
|
| 7 | recnnpr 7731 |
. . . . . . . . 9
| |
| 8 | 5, 7 | syl 14 |
. . . . . . . 8
|
| 9 | addclpr 7720 |
. . . . . . . 8
| |
| 10 | 6, 8, 9 | syl2anc 411 |
. . . . . . 7
|
| 11 | caucvgprprlemnbj.j |
. . . . . . . 8
| |
| 12 | recnnpr 7731 |
. . . . . . . 8
| |
| 13 | 11, 12 | syl 14 |
. . . . . . 7
|
| 14 | ltaddpr 7780 |
. . . . . . 7
| |
| 15 | 10, 13, 14 | syl2anc 411 |
. . . . . 6
|
| 16 | 15 | adantr 276 |
. . . . 5
|
| 17 | ltsopr 7779 |
. . . . . 6
| |
| 18 | ltrelpr 7688 |
. . . . . 6
| |
| 19 | 17, 18 | sotri 5123 |
. . . . 5
|
| 20 | 4, 16, 19 | syl2anc 411 |
. . . 4
|
| 21 | ltaddpr 7780 |
. . . . . . . 8
| |
| 22 | 6, 8, 21 | syl2anc 411 |
. . . . . . 7
|
| 23 | 22 | adantr 276 |
. . . . . 6
|
| 24 | fveq2 5626 |
. . . . . . . 8
| |
| 25 | 24 | breq1d 4092 |
. . . . . . 7
|
| 26 | 25 | adantl 277 |
. . . . . 6
|
| 27 | 23, 26 | mpbid 147 |
. . . . 5
|
| 28 | 15 | adantr 276 |
. . . . 5
|
| 29 | 27, 28, 19 | syl2anc 411 |
. . . 4
|
| 30 | 1, 2 | caucvgprprlemval 7871 |
. . . . . 6
|
| 31 | 30 | simpld 112 |
. . . . 5
|
| 32 | ltaprg 7802 |
. . . . . . . . 9
| |
| 33 | 32 | adantl 277 |
. . . . . . . 8
|
| 34 | addcomprg 7761 |
. . . . . . . . 9
| |
| 35 | 34 | adantl 277 |
. . . . . . . 8
|
| 36 | 33, 6, 10, 13, 35 | caovord2d 6174 |
. . . . . . 7
|
| 37 | 22, 36 | mpbid 147 |
. . . . . 6
|
| 38 | 37 | adantr 276 |
. . . . 5
|
| 39 | 17, 18 | sotri 5123 |
. . . . 5
|
| 40 | 31, 38, 39 | syl2anc 411 |
. . . 4
|
| 41 | pitri3or 7505 |
. . . . 5
| |
| 42 | 5, 11, 41 | syl2anc 411 |
. . . 4
|
| 43 | 20, 29, 40, 42 | mpjao3dan 1341 |
. . 3
|
| 44 | 1, 11 | ffvelcdmd 5770 |
. . . . 5
|
| 45 | addclpr 7720 |
. . . . . 6
| |
| 46 | 10, 13, 45 | syl2anc 411 |
. . . . 5
|
| 47 | so2nr 4411 |
. . . . . 6
| |
| 48 | 17, 47 | mpan 424 |
. . . . 5
|
| 49 | 44, 46, 48 | syl2anc 411 |
. . . 4
|
| 50 | imnan 694 |
. . . 4
| |
| 51 | 49, 50 | sylibr 134 |
. . 3
|
| 52 | 43, 51 | mpd 13 |
. 2
|
| 53 | breq1 4085 |
. . . . . . 7
| |
| 54 | 53 | cbvabv 2354 |
. . . . . 6
|
| 55 | breq2 4086 |
. . . . . . 7
| |
| 56 | 55 | cbvabv 2354 |
. . . . . 6
|
| 57 | 54, 56 | opeq12i 3861 |
. . . . 5
|
| 58 | 57 | oveq2i 6011 |
. . . 4
|
| 59 | breq1 4085 |
. . . . . 6
| |
| 60 | 59 | cbvabv 2354 |
. . . . 5
|
| 61 | breq2 4086 |
. . . . . 6
| |
| 62 | 61 | cbvabv 2354 |
. . . . 5
|
| 63 | 60, 62 | opeq12i 3861 |
. . . 4
|
| 64 | 58, 63 | oveq12i 6012 |
. . 3
|
| 65 | 64 | breq1i 4089 |
. 2
|
| 66 | 52, 65 | sylnib 680 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-eprel 4379 df-id 4383 df-po 4386 df-iso 4387 df-iord 4456 df-on 4458 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-irdg 6514 df-1o 6560 df-2o 6561 df-oadd 6564 df-omul 6565 df-er 6678 df-ec 6680 df-qs 6684 df-ni 7487 df-pli 7488 df-mi 7489 df-lti 7490 df-plpq 7527 df-mpq 7528 df-enq 7530 df-nqqs 7531 df-plqqs 7532 df-mqqs 7533 df-1nqqs 7534 df-rq 7535 df-ltnqqs 7536 df-enq0 7607 df-nq0 7608 df-0nq0 7609 df-plq0 7610 df-mq0 7611 df-inp 7649 df-iplp 7651 df-iltp 7653 |
| This theorem is referenced by: caucvgprprlemaddq 7891 |
| Copyright terms: Public domain | W3C validator |