ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemnbj Unicode version

Theorem caucvgprprlemnbj 7625
Description: Lemma for caucvgprpr 7644. Non-existence of two elements of the sequence which are too far from each other. (Contributed by Jim Kingdon, 17-Jun-2021.)
Hypotheses
Ref Expression
caucvgprpr.f  |-  ( ph  ->  F : N. --> P. )
caucvgprpr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <P  ( ( F `
 k )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  k
)  <P  ( ( F `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) )
caucvgprprlemnbj.b  |-  ( ph  ->  B  e.  N. )
caucvgprprlemnbj.j  |-  ( ph  ->  J  e.  N. )
Assertion
Ref Expression
caucvgprprlemnbj  |-  ( ph  ->  -.  ( ( ( F `  B )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  u } >. )  +P.  <. { l  |  l  <Q 
( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  u } >. )  <P  ( F `  J
) )
Distinct variable groups:    B, k, l, n    u, B, k, n    k, F, n   
k, J, l, n   
u, J
Allowed substitution hints:    ph( u, k, n, l)    F( u, l)

Proof of Theorem caucvgprprlemnbj
Dummy variables  p  q  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caucvgprpr.f . . . . . . 7  |-  ( ph  ->  F : N. --> P. )
2 caucvgprpr.cau . . . . . . 7  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <P  ( ( F `
 k )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  k
)  <P  ( ( F `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) )
31, 2caucvgprprlemval 7620 . . . . . 6  |-  ( (
ph  /\  B  <N  J )  ->  ( ( F `  B )  <P  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >. )  /\  ( F `  J
)  <P  ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. ) ) )
43simprd 113 . . . . 5  |-  ( (
ph  /\  B  <N  J )  ->  ( F `  J )  <P  (
( F `  B
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >. )
)
5 caucvgprprlemnbj.b . . . . . . . . 9  |-  ( ph  ->  B  e.  N. )
61, 5ffvelrnd 5615 . . . . . . . 8  |-  ( ph  ->  ( F `  B
)  e.  P. )
7 recnnpr 7480 . . . . . . . . 9  |-  ( B  e.  N.  ->  <. { p  |  p  <Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >.  e.  P. )
85, 7syl 14 . . . . . . . 8  |-  ( ph  -> 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >.  e. 
P. )
9 addclpr 7469 . . . . . . . 8  |-  ( ( ( F `  B
)  e.  P.  /\  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >.  e. 
P. )  ->  (
( F `  B
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >. )  e.  P. )
106, 8, 9syl2anc 409 . . . . . . 7  |-  ( ph  ->  ( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >. )  e.  P. )
11 caucvgprprlemnbj.j . . . . . . . 8  |-  ( ph  ->  J  e.  N. )
12 recnnpr 7480 . . . . . . . 8  |-  ( J  e.  N.  ->  <. { p  |  p  <Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >.  e.  P. )
1311, 12syl 14 . . . . . . 7  |-  ( ph  -> 
<. { p  |  p 
<Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >.  e. 
P. )
14 ltaddpr 7529 . . . . . . 7  |-  ( ( ( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >. )  e.  P.  /\  <. { p  |  p  <Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >.  e.  P. )  ->  ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  ( ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. ) )
1510, 13, 14syl2anc 409 . . . . . 6  |-  ( ph  ->  ( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. ) )
1615adantr 274 . . . . 5  |-  ( (
ph  /\  B  <N  J )  ->  ( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  (
( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. ) )
17 ltsopr 7528 . . . . . 6  |-  <P  Or  P.
18 ltrelpr 7437 . . . . . 6  |-  <P  C_  ( P.  X.  P. )
1917, 18sotri 4993 . . . . 5  |-  ( ( ( F `  J
)  <P  ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  /\  ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  ( ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. ) )  -> 
( F `  J
)  <P  ( ( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )
)
204, 16, 19syl2anc 409 . . . 4  |-  ( (
ph  /\  B  <N  J )  ->  ( F `  J )  <P  (
( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. ) )
21 ltaddpr 7529 . . . . . . . 8  |-  ( ( ( F `  B
)  e.  P.  /\  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >.  e. 
P. )  ->  ( F `  B )  <P  ( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >. )
)
226, 8, 21syl2anc 409 . . . . . . 7  |-  ( ph  ->  ( F `  B
)  <P  ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. ) )
2322adantr 274 . . . . . 6  |-  ( (
ph  /\  B  =  J )  ->  ( F `  B )  <P  ( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >. )
)
24 fveq2 5480 . . . . . . . 8  |-  ( B  =  J  ->  ( F `  B )  =  ( F `  J ) )
2524breq1d 3986 . . . . . . 7  |-  ( B  =  J  ->  (
( F `  B
)  <P  ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  <-> 
( F `  J
)  <P  ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. ) ) )
2625adantl 275 . . . . . 6  |-  ( (
ph  /\  B  =  J )  ->  (
( F `  B
)  <P  ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  <-> 
( F `  J
)  <P  ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. ) ) )
2723, 26mpbid 146 . . . . 5  |-  ( (
ph  /\  B  =  J )  ->  ( F `  J )  <P  ( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >. )
)
2815adantr 274 . . . . 5  |-  ( (
ph  /\  B  =  J )  ->  (
( F `  B
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. ) )
2927, 28, 19syl2anc 409 . . . 4  |-  ( (
ph  /\  B  =  J )  ->  ( F `  J )  <P  ( ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. ) )
301, 2caucvgprprlemval 7620 . . . . . 6  |-  ( (
ph  /\  J  <N  B )  ->  ( ( F `  J )  <P  ( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  /\  ( F `  B
)  <P  ( ( F `
 J )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. ) ) )
3130simpld 111 . . . . 5  |-  ( (
ph  /\  J  <N  B )  ->  ( F `  J )  <P  (
( F `  B
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )
)
32 ltaprg 7551 . . . . . . . . 9  |-  ( ( x  e.  P.  /\  y  e.  P.  /\  z  e.  P. )  ->  (
x  <P  y  <->  ( z  +P.  x )  <P  (
z  +P.  y )
) )
3332adantl 275 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  P.  /\  y  e. 
P.  /\  z  e.  P. ) )  ->  (
x  <P  y  <->  ( z  +P.  x )  <P  (
z  +P.  y )
) )
34 addcomprg 7510 . . . . . . . . 9  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( x  +P.  y
)  =  ( y  +P.  x ) )
3534adantl 275 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  P.  /\  y  e. 
P. ) )  -> 
( x  +P.  y
)  =  ( y  +P.  x ) )
3633, 6, 10, 13, 35caovord2d 6002 . . . . . . 7  |-  ( ph  ->  ( ( F `  B )  <P  (
( F `  B
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >. )  <->  ( ( F `  B
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. ) ) )
3722, 36mpbid 146 . . . . . 6  |-  ( ph  ->  ( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. ) )
3837adantr 274 . . . . 5  |-  ( (
ph  /\  J  <N  B )  ->  ( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  (
( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. ) )
3917, 18sotri 4993 . . . . 5  |-  ( ( ( F `  J
)  <P  ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  /\  ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  ( ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. ) )  -> 
( F `  J
)  <P  ( ( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )
)
4031, 38, 39syl2anc 409 . . . 4  |-  ( (
ph  /\  J  <N  B )  ->  ( F `  J )  <P  (
( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. ) )
41 pitri3or 7254 . . . . 5  |-  ( ( B  e.  N.  /\  J  e.  N. )  ->  ( B  <N  J  \/  B  =  J  \/  J  <N  B ) )
425, 11, 41syl2anc 409 . . . 4  |-  ( ph  ->  ( B  <N  J  \/  B  =  J  \/  J  <N  B ) )
4320, 29, 40, 42mpjao3dan 1296 . . 3  |-  ( ph  ->  ( F `  J
)  <P  ( ( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )
)
441, 11ffvelrnd 5615 . . . . 5  |-  ( ph  ->  ( F `  J
)  e.  P. )
45 addclpr 7469 . . . . . 6  |-  ( ( ( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >. )  e.  P.  /\  <. { p  |  p  <Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >.  e.  P. )  ->  ( ( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  e.  P. )
4610, 13, 45syl2anc 409 . . . . 5  |-  ( ph  ->  ( ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  e.  P. )
47 so2nr 4293 . . . . . 6  |-  ( ( 
<P  Or  P.  /\  (
( F `  J
)  e.  P.  /\  ( ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  e.  P. ) )  ->  -.  ( ( F `  J )  <P  (
( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  /\  (
( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  ( F `  J )
) )
4817, 47mpan 421 . . . . 5  |-  ( ( ( F `  J
)  e.  P.  /\  ( ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  e.  P. )  ->  -.  ( ( F `  J )  <P  ( ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  /\  (
( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  ( F `  J )
) )
4944, 46, 48syl2anc 409 . . . 4  |-  ( ph  ->  -.  ( ( F `
 J )  <P 
( ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  /\  (
( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  ( F `  J )
) )
50 imnan 680 . . . 4  |-  ( ( ( F `  J
)  <P  ( ( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  ->  -.  ( ( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( F `  J
) )  <->  -.  (
( F `  J
)  <P  ( ( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  /\  ( ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  ( F `  J )
) )
5149, 50sylibr 133 . . 3  |-  ( ph  ->  ( ( F `  J )  <P  (
( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  ->  -.  ( ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  ( F `  J )
) )
5243, 51mpd 13 . 2  |-  ( ph  ->  -.  ( ( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( F `  J
) )
53 breq1 3979 . . . . . . 7  |-  ( p  =  l  ->  (
p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <->  l  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) ) )
5453cbvabv 2289 . . . . . 6  |-  { p  |  p  <Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  ) }  =  { l  |  l  <Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  ) }
55 breq2 3980 . . . . . . 7  |-  ( q  =  u  ->  (
( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q  <->  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  u ) )
5655cbvabv 2289 . . . . . 6  |-  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q }  =  {
u  |  ( *Q
`  [ <. B ,  1o >. ]  ~Q  )  <Q  u }
5754, 56opeq12i 3757 . . . . 5  |-  <. { p  |  p  <Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >.  =  <. { l  |  l  <Q 
( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  u } >.
5857oveq2i 5847 . . . 4  |-  ( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  =  ( ( F `  B
)  +P.  <. { l  |  l  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  u } >. )
59 breq1 3979 . . . . . 6  |-  ( p  =  l  ->  (
p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <->  l  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) )
6059cbvabv 2289 . . . . 5  |-  { p  |  p  <Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  ) }  =  { l  |  l  <Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  ) }
61 breq2 3980 . . . . . 6  |-  ( q  =  u  ->  (
( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q  <->  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  u ) )
6261cbvabv 2289 . . . . 5  |-  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q }  =  {
u  |  ( *Q
`  [ <. J ,  1o >. ]  ~Q  )  <Q  u }
6360, 62opeq12i 3757 . . . 4  |-  <. { p  |  p  <Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >.  =  <. { l  |  l  <Q 
( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  u } >.
6458, 63oveq12i 5848 . . 3  |-  ( ( ( F `  B
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  =  ( ( ( F `  B )  +P.  <. { l  |  l  <Q 
( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  u } >. )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  u } >. )
6564breq1i 3983 . 2  |-  ( ( ( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  ( F `  J )  <->  ( ( ( F `  B )  +P.  <. { l  |  l  <Q 
( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  u } >. )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  u } >. )  <P  ( F `  J )
)
6652, 65sylnib 666 1  |-  ( ph  ->  -.  ( ( ( F `  B )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  u } >. )  +P.  <. { l  |  l  <Q 
( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  u } >. )  <P  ( F `  J
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ w3o 966    /\ w3a 967    = wceq 1342    e. wcel 2135   {cab 2150   A.wral 2442   <.cop 3573   class class class wbr 3976    Or wor 4267   -->wf 5178   ` cfv 5182  (class class class)co 5836   1oc1o 6368   [cec 6490   N.cnpi 7204    <N clti 7207    ~Q ceq 7211   *Qcrq 7216    <Q cltq 7217   P.cnp 7223    +P. cpp 7225    <P cltp 7227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-eprel 4261  df-id 4265  df-po 4268  df-iso 4269  df-iord 4338  df-on 4340  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-recs 6264  df-irdg 6329  df-1o 6375  df-2o 6376  df-oadd 6379  df-omul 6380  df-er 6492  df-ec 6494  df-qs 6498  df-ni 7236  df-pli 7237  df-mi 7238  df-lti 7239  df-plpq 7276  df-mpq 7277  df-enq 7279  df-nqqs 7280  df-plqqs 7281  df-mqqs 7282  df-1nqqs 7283  df-rq 7284  df-ltnqqs 7285  df-enq0 7356  df-nq0 7357  df-0nq0 7358  df-plq0 7359  df-mq0 7360  df-inp 7398  df-iplp 7400  df-iltp 7402
This theorem is referenced by:  caucvgprprlemaddq  7640
  Copyright terms: Public domain W3C validator