ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemnbj Unicode version

Theorem caucvgprprlemnbj 7806
Description: Lemma for caucvgprpr 7825. Non-existence of two elements of the sequence which are too far from each other. (Contributed by Jim Kingdon, 17-Jun-2021.)
Hypotheses
Ref Expression
caucvgprpr.f  |-  ( ph  ->  F : N. --> P. )
caucvgprpr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <P  ( ( F `
 k )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  k
)  <P  ( ( F `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) )
caucvgprprlemnbj.b  |-  ( ph  ->  B  e.  N. )
caucvgprprlemnbj.j  |-  ( ph  ->  J  e.  N. )
Assertion
Ref Expression
caucvgprprlemnbj  |-  ( ph  ->  -.  ( ( ( F `  B )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  u } >. )  +P.  <. { l  |  l  <Q 
( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  u } >. )  <P  ( F `  J
) )
Distinct variable groups:    B, k, l, n    u, B, k, n    k, F, n   
k, J, l, n   
u, J
Allowed substitution hints:    ph( u, k, n, l)    F( u, l)

Proof of Theorem caucvgprprlemnbj
Dummy variables  p  q  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caucvgprpr.f . . . . . . 7  |-  ( ph  ->  F : N. --> P. )
2 caucvgprpr.cau . . . . . . 7  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <P  ( ( F `
 k )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  k
)  <P  ( ( F `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) )
31, 2caucvgprprlemval 7801 . . . . . 6  |-  ( (
ph  /\  B  <N  J )  ->  ( ( F `  B )  <P  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >. )  /\  ( F `  J
)  <P  ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. ) ) )
43simprd 114 . . . . 5  |-  ( (
ph  /\  B  <N  J )  ->  ( F `  J )  <P  (
( F `  B
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >. )
)
5 caucvgprprlemnbj.b . . . . . . . . 9  |-  ( ph  ->  B  e.  N. )
61, 5ffvelcdmd 5716 . . . . . . . 8  |-  ( ph  ->  ( F `  B
)  e.  P. )
7 recnnpr 7661 . . . . . . . . 9  |-  ( B  e.  N.  ->  <. { p  |  p  <Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >.  e.  P. )
85, 7syl 14 . . . . . . . 8  |-  ( ph  -> 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >.  e. 
P. )
9 addclpr 7650 . . . . . . . 8  |-  ( ( ( F `  B
)  e.  P.  /\  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >.  e. 
P. )  ->  (
( F `  B
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >. )  e.  P. )
106, 8, 9syl2anc 411 . . . . . . 7  |-  ( ph  ->  ( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >. )  e.  P. )
11 caucvgprprlemnbj.j . . . . . . . 8  |-  ( ph  ->  J  e.  N. )
12 recnnpr 7661 . . . . . . . 8  |-  ( J  e.  N.  ->  <. { p  |  p  <Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >.  e.  P. )
1311, 12syl 14 . . . . . . 7  |-  ( ph  -> 
<. { p  |  p 
<Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >.  e. 
P. )
14 ltaddpr 7710 . . . . . . 7  |-  ( ( ( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >. )  e.  P.  /\  <. { p  |  p  <Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >.  e.  P. )  ->  ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  ( ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. ) )
1510, 13, 14syl2anc 411 . . . . . 6  |-  ( ph  ->  ( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. ) )
1615adantr 276 . . . . 5  |-  ( (
ph  /\  B  <N  J )  ->  ( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  (
( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. ) )
17 ltsopr 7709 . . . . . 6  |-  <P  Or  P.
18 ltrelpr 7618 . . . . . 6  |-  <P  C_  ( P.  X.  P. )
1917, 18sotri 5078 . . . . 5  |-  ( ( ( F `  J
)  <P  ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  /\  ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  ( ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. ) )  -> 
( F `  J
)  <P  ( ( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )
)
204, 16, 19syl2anc 411 . . . 4  |-  ( (
ph  /\  B  <N  J )  ->  ( F `  J )  <P  (
( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. ) )
21 ltaddpr 7710 . . . . . . . 8  |-  ( ( ( F `  B
)  e.  P.  /\  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >.  e. 
P. )  ->  ( F `  B )  <P  ( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >. )
)
226, 8, 21syl2anc 411 . . . . . . 7  |-  ( ph  ->  ( F `  B
)  <P  ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. ) )
2322adantr 276 . . . . . 6  |-  ( (
ph  /\  B  =  J )  ->  ( F `  B )  <P  ( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >. )
)
24 fveq2 5576 . . . . . . . 8  |-  ( B  =  J  ->  ( F `  B )  =  ( F `  J ) )
2524breq1d 4054 . . . . . . 7  |-  ( B  =  J  ->  (
( F `  B
)  <P  ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  <-> 
( F `  J
)  <P  ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. ) ) )
2625adantl 277 . . . . . 6  |-  ( (
ph  /\  B  =  J )  ->  (
( F `  B
)  <P  ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  <-> 
( F `  J
)  <P  ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. ) ) )
2723, 26mpbid 147 . . . . 5  |-  ( (
ph  /\  B  =  J )  ->  ( F `  J )  <P  ( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >. )
)
2815adantr 276 . . . . 5  |-  ( (
ph  /\  B  =  J )  ->  (
( F `  B
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. ) )
2927, 28, 19syl2anc 411 . . . 4  |-  ( (
ph  /\  B  =  J )  ->  ( F `  J )  <P  ( ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. ) )
301, 2caucvgprprlemval 7801 . . . . . 6  |-  ( (
ph  /\  J  <N  B )  ->  ( ( F `  J )  <P  ( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  /\  ( F `  B
)  <P  ( ( F `
 J )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. ) ) )
3130simpld 112 . . . . 5  |-  ( (
ph  /\  J  <N  B )  ->  ( F `  J )  <P  (
( F `  B
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )
)
32 ltaprg 7732 . . . . . . . . 9  |-  ( ( x  e.  P.  /\  y  e.  P.  /\  z  e.  P. )  ->  (
x  <P  y  <->  ( z  +P.  x )  <P  (
z  +P.  y )
) )
3332adantl 277 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  P.  /\  y  e. 
P.  /\  z  e.  P. ) )  ->  (
x  <P  y  <->  ( z  +P.  x )  <P  (
z  +P.  y )
) )
34 addcomprg 7691 . . . . . . . . 9  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( x  +P.  y
)  =  ( y  +P.  x ) )
3534adantl 277 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  P.  /\  y  e. 
P. ) )  -> 
( x  +P.  y
)  =  ( y  +P.  x ) )
3633, 6, 10, 13, 35caovord2d 6116 . . . . . . 7  |-  ( ph  ->  ( ( F `  B )  <P  (
( F `  B
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >. )  <->  ( ( F `  B
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. ) ) )
3722, 36mpbid 147 . . . . . 6  |-  ( ph  ->  ( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. ) )
3837adantr 276 . . . . 5  |-  ( (
ph  /\  J  <N  B )  ->  ( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  (
( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. ) )
3917, 18sotri 5078 . . . . 5  |-  ( ( ( F `  J
)  <P  ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  /\  ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  ( ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. ) )  -> 
( F `  J
)  <P  ( ( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )
)
4031, 38, 39syl2anc 411 . . . 4  |-  ( (
ph  /\  J  <N  B )  ->  ( F `  J )  <P  (
( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. ) )
41 pitri3or 7435 . . . . 5  |-  ( ( B  e.  N.  /\  J  e.  N. )  ->  ( B  <N  J  \/  B  =  J  \/  J  <N  B ) )
425, 11, 41syl2anc 411 . . . 4  |-  ( ph  ->  ( B  <N  J  \/  B  =  J  \/  J  <N  B ) )
4320, 29, 40, 42mpjao3dan 1320 . . 3  |-  ( ph  ->  ( F `  J
)  <P  ( ( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )
)
441, 11ffvelcdmd 5716 . . . . 5  |-  ( ph  ->  ( F `  J
)  e.  P. )
45 addclpr 7650 . . . . . 6  |-  ( ( ( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >. )  e.  P.  /\  <. { p  |  p  <Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >.  e.  P. )  ->  ( ( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  e.  P. )
4610, 13, 45syl2anc 411 . . . . 5  |-  ( ph  ->  ( ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  e.  P. )
47 so2nr 4368 . . . . . 6  |-  ( ( 
<P  Or  P.  /\  (
( F `  J
)  e.  P.  /\  ( ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  e.  P. ) )  ->  -.  ( ( F `  J )  <P  (
( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  /\  (
( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  ( F `  J )
) )
4817, 47mpan 424 . . . . 5  |-  ( ( ( F `  J
)  e.  P.  /\  ( ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  e.  P. )  ->  -.  ( ( F `  J )  <P  ( ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  /\  (
( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  ( F `  J )
) )
4944, 46, 48syl2anc 411 . . . 4  |-  ( ph  ->  -.  ( ( F `
 J )  <P 
( ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  /\  (
( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  ( F `  J )
) )
50 imnan 692 . . . 4  |-  ( ( ( F `  J
)  <P  ( ( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  ->  -.  ( ( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( F `  J
) )  <->  -.  (
( F `  J
)  <P  ( ( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  /\  ( ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  ( F `  J )
) )
5149, 50sylibr 134 . . 3  |-  ( ph  ->  ( ( F `  J )  <P  (
( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  ->  -.  ( ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  ( F `  J )
) )
5243, 51mpd 13 . 2  |-  ( ph  ->  -.  ( ( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( F `  J
) )
53 breq1 4047 . . . . . . 7  |-  ( p  =  l  ->  (
p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <->  l  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) ) )
5453cbvabv 2330 . . . . . 6  |-  { p  |  p  <Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  ) }  =  { l  |  l  <Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  ) }
55 breq2 4048 . . . . . . 7  |-  ( q  =  u  ->  (
( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q  <->  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  u ) )
5655cbvabv 2330 . . . . . 6  |-  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q }  =  {
u  |  ( *Q
`  [ <. B ,  1o >. ]  ~Q  )  <Q  u }
5754, 56opeq12i 3824 . . . . 5  |-  <. { p  |  p  <Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >.  =  <. { l  |  l  <Q 
( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  u } >.
5857oveq2i 5955 . . . 4  |-  ( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  =  ( ( F `  B
)  +P.  <. { l  |  l  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  u } >. )
59 breq1 4047 . . . . . 6  |-  ( p  =  l  ->  (
p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <->  l  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) )
6059cbvabv 2330 . . . . 5  |-  { p  |  p  <Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  ) }  =  { l  |  l  <Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  ) }
61 breq2 4048 . . . . . 6  |-  ( q  =  u  ->  (
( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q  <->  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  u ) )
6261cbvabv 2330 . . . . 5  |-  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q }  =  {
u  |  ( *Q
`  [ <. J ,  1o >. ]  ~Q  )  <Q  u }
6360, 62opeq12i 3824 . . . 4  |-  <. { p  |  p  <Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >.  =  <. { l  |  l  <Q 
( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  u } >.
6458, 63oveq12i 5956 . . 3  |-  ( ( ( F `  B
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  =  ( ( ( F `  B )  +P.  <. { l  |  l  <Q 
( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  u } >. )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  u } >. )
6564breq1i 4051 . 2  |-  ( ( ( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  ( F `  J )  <->  ( ( ( F `  B )  +P.  <. { l  |  l  <Q 
( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  u } >. )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  u } >. )  <P  ( F `  J )
)
6652, 65sylnib 678 1  |-  ( ph  ->  -.  ( ( ( F `  B )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  u } >. )  +P.  <. { l  |  l  <Q 
( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  u } >. )  <P  ( F `  J
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ w3o 980    /\ w3a 981    = wceq 1373    e. wcel 2176   {cab 2191   A.wral 2484   <.cop 3636   class class class wbr 4044    Or wor 4342   -->wf 5267   ` cfv 5271  (class class class)co 5944   1oc1o 6495   [cec 6618   N.cnpi 7385    <N clti 7388    ~Q ceq 7392   *Qcrq 7397    <Q cltq 7398   P.cnp 7404    +P. cpp 7406    <P cltp 7408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-eprel 4336  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-irdg 6456  df-1o 6502  df-2o 6503  df-oadd 6506  df-omul 6507  df-er 6620  df-ec 6622  df-qs 6626  df-ni 7417  df-pli 7418  df-mi 7419  df-lti 7420  df-plpq 7457  df-mpq 7458  df-enq 7460  df-nqqs 7461  df-plqqs 7462  df-mqqs 7463  df-1nqqs 7464  df-rq 7465  df-ltnqqs 7466  df-enq0 7537  df-nq0 7538  df-0nq0 7539  df-plq0 7540  df-mq0 7541  df-inp 7579  df-iplp 7581  df-iltp 7583
This theorem is referenced by:  caucvgprprlemaddq  7821
  Copyright terms: Public domain W3C validator