| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caucvgprprlemnbj | Unicode version | ||
| Description: Lemma for caucvgprpr 7855. Non-existence of two elements of the sequence which are too far from each other. (Contributed by Jim Kingdon, 17-Jun-2021.) |
| Ref | Expression |
|---|---|
| caucvgprpr.f |
|
| caucvgprpr.cau |
|
| caucvgprprlemnbj.b |
|
| caucvgprprlemnbj.j |
|
| Ref | Expression |
|---|---|
| caucvgprprlemnbj |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caucvgprpr.f |
. . . . . . 7
| |
| 2 | caucvgprpr.cau |
. . . . . . 7
| |
| 3 | 1, 2 | caucvgprprlemval 7831 |
. . . . . 6
|
| 4 | 3 | simprd 114 |
. . . . 5
|
| 5 | caucvgprprlemnbj.b |
. . . . . . . . 9
| |
| 6 | 1, 5 | ffvelcdmd 5734 |
. . . . . . . 8
|
| 7 | recnnpr 7691 |
. . . . . . . . 9
| |
| 8 | 5, 7 | syl 14 |
. . . . . . . 8
|
| 9 | addclpr 7680 |
. . . . . . . 8
| |
| 10 | 6, 8, 9 | syl2anc 411 |
. . . . . . 7
|
| 11 | caucvgprprlemnbj.j |
. . . . . . . 8
| |
| 12 | recnnpr 7691 |
. . . . . . . 8
| |
| 13 | 11, 12 | syl 14 |
. . . . . . 7
|
| 14 | ltaddpr 7740 |
. . . . . . 7
| |
| 15 | 10, 13, 14 | syl2anc 411 |
. . . . . 6
|
| 16 | 15 | adantr 276 |
. . . . 5
|
| 17 | ltsopr 7739 |
. . . . . 6
| |
| 18 | ltrelpr 7648 |
. . . . . 6
| |
| 19 | 17, 18 | sotri 5092 |
. . . . 5
|
| 20 | 4, 16, 19 | syl2anc 411 |
. . . 4
|
| 21 | ltaddpr 7740 |
. . . . . . . 8
| |
| 22 | 6, 8, 21 | syl2anc 411 |
. . . . . . 7
|
| 23 | 22 | adantr 276 |
. . . . . 6
|
| 24 | fveq2 5594 |
. . . . . . . 8
| |
| 25 | 24 | breq1d 4064 |
. . . . . . 7
|
| 26 | 25 | adantl 277 |
. . . . . 6
|
| 27 | 23, 26 | mpbid 147 |
. . . . 5
|
| 28 | 15 | adantr 276 |
. . . . 5
|
| 29 | 27, 28, 19 | syl2anc 411 |
. . . 4
|
| 30 | 1, 2 | caucvgprprlemval 7831 |
. . . . . 6
|
| 31 | 30 | simpld 112 |
. . . . 5
|
| 32 | ltaprg 7762 |
. . . . . . . . 9
| |
| 33 | 32 | adantl 277 |
. . . . . . . 8
|
| 34 | addcomprg 7721 |
. . . . . . . . 9
| |
| 35 | 34 | adantl 277 |
. . . . . . . 8
|
| 36 | 33, 6, 10, 13, 35 | caovord2d 6134 |
. . . . . . 7
|
| 37 | 22, 36 | mpbid 147 |
. . . . . 6
|
| 38 | 37 | adantr 276 |
. . . . 5
|
| 39 | 17, 18 | sotri 5092 |
. . . . 5
|
| 40 | 31, 38, 39 | syl2anc 411 |
. . . 4
|
| 41 | pitri3or 7465 |
. . . . 5
| |
| 42 | 5, 11, 41 | syl2anc 411 |
. . . 4
|
| 43 | 20, 29, 40, 42 | mpjao3dan 1320 |
. . 3
|
| 44 | 1, 11 | ffvelcdmd 5734 |
. . . . 5
|
| 45 | addclpr 7680 |
. . . . . 6
| |
| 46 | 10, 13, 45 | syl2anc 411 |
. . . . 5
|
| 47 | so2nr 4381 |
. . . . . 6
| |
| 48 | 17, 47 | mpan 424 |
. . . . 5
|
| 49 | 44, 46, 48 | syl2anc 411 |
. . . 4
|
| 50 | imnan 692 |
. . . 4
| |
| 51 | 49, 50 | sylibr 134 |
. . 3
|
| 52 | 43, 51 | mpd 13 |
. 2
|
| 53 | breq1 4057 |
. . . . . . 7
| |
| 54 | 53 | cbvabv 2331 |
. . . . . 6
|
| 55 | breq2 4058 |
. . . . . . 7
| |
| 56 | 55 | cbvabv 2331 |
. . . . . 6
|
| 57 | 54, 56 | opeq12i 3833 |
. . . . 5
|
| 58 | 57 | oveq2i 5973 |
. . . 4
|
| 59 | breq1 4057 |
. . . . . 6
| |
| 60 | 59 | cbvabv 2331 |
. . . . 5
|
| 61 | breq2 4058 |
. . . . . 6
| |
| 62 | 61 | cbvabv 2331 |
. . . . 5
|
| 63 | 60, 62 | opeq12i 3833 |
. . . 4
|
| 64 | 58, 63 | oveq12i 5974 |
. . 3
|
| 65 | 64 | breq1i 4061 |
. 2
|
| 66 | 52, 65 | sylnib 678 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4170 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-iinf 4649 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-tr 4154 df-eprel 4349 df-id 4353 df-po 4356 df-iso 4357 df-iord 4426 df-on 4428 df-suc 4431 df-iom 4652 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-ov 5965 df-oprab 5966 df-mpo 5967 df-1st 6244 df-2nd 6245 df-recs 6409 df-irdg 6474 df-1o 6520 df-2o 6521 df-oadd 6524 df-omul 6525 df-er 6638 df-ec 6640 df-qs 6644 df-ni 7447 df-pli 7448 df-mi 7449 df-lti 7450 df-plpq 7487 df-mpq 7488 df-enq 7490 df-nqqs 7491 df-plqqs 7492 df-mqqs 7493 df-1nqqs 7494 df-rq 7495 df-ltnqqs 7496 df-enq0 7567 df-nq0 7568 df-0nq0 7569 df-plq0 7570 df-mq0 7571 df-inp 7609 df-iplp 7611 df-iltp 7613 |
| This theorem is referenced by: caucvgprprlemaddq 7851 |
| Copyright terms: Public domain | W3C validator |