ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tposeq Unicode version

Theorem tposeq 6391
Description: Equality theorem for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
tposeq  |-  ( F  =  G  -> tpos  F  = tpos 
G )

Proof of Theorem tposeq
StepHypRef Expression
1 eqimss 3278 . . 3  |-  ( F  =  G  ->  F  C_  G )
2 tposss 6390 . . 3  |-  ( F 
C_  G  -> tpos  F  C_ tpos  G )
31, 2syl 14 . 2  |-  ( F  =  G  -> tpos  F  C_ tpos  G )
4 eqimss2 3279 . . 3  |-  ( F  =  G  ->  G  C_  F )
5 tposss 6390 . . 3  |-  ( G 
C_  F  -> tpos  G  C_ tpos  F )
64, 5syl 14 . 2  |-  ( F  =  G  -> tpos  G  C_ tpos  F )
73, 6eqssd 3241 1  |-  ( F  =  G  -> tpos  F  = tpos 
G )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    C_ wss 3197  tpos ctpos 6388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-mpt 4146  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-res 4730  df-tpos 6389
This theorem is referenced by:  tposeqd  6392  tposeqi  6421
  Copyright terms: Public domain W3C validator