ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tposeq Unicode version

Theorem tposeq 6332
Description: Equality theorem for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
tposeq  |-  ( F  =  G  -> tpos  F  = tpos 
G )

Proof of Theorem tposeq
StepHypRef Expression
1 eqimss 3246 . . 3  |-  ( F  =  G  ->  F  C_  G )
2 tposss 6331 . . 3  |-  ( F 
C_  G  -> tpos  F  C_ tpos  G )
31, 2syl 14 . 2  |-  ( F  =  G  -> tpos  F  C_ tpos  G )
4 eqimss2 3247 . . 3  |-  ( F  =  G  ->  G  C_  F )
5 tposss 6331 . . 3  |-  ( G 
C_  F  -> tpos  G  C_ tpos  F )
64, 5syl 14 . 2  |-  ( F  =  G  -> tpos  G  C_ tpos  F )
73, 6eqssd 3209 1  |-  ( F  =  G  -> tpos  F  = tpos 
G )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1372    C_ wss 3165  tpos ctpos 6329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-mpt 4106  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-res 4686  df-tpos 6330
This theorem is referenced by:  tposeqd  6333  tposeqi  6362
  Copyright terms: Public domain W3C validator