| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tposeq | GIF version | ||
| Description: Equality theorem for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| Ref | Expression |
|---|---|
| tposeq | ⊢ (𝐹 = 𝐺 → tpos 𝐹 = tpos 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss 3248 | . . 3 ⊢ (𝐹 = 𝐺 → 𝐹 ⊆ 𝐺) | |
| 2 | tposss 6339 | . . 3 ⊢ (𝐹 ⊆ 𝐺 → tpos 𝐹 ⊆ tpos 𝐺) | |
| 3 | 1, 2 | syl 14 | . 2 ⊢ (𝐹 = 𝐺 → tpos 𝐹 ⊆ tpos 𝐺) |
| 4 | eqimss2 3249 | . . 3 ⊢ (𝐹 = 𝐺 → 𝐺 ⊆ 𝐹) | |
| 5 | tposss 6339 | . . 3 ⊢ (𝐺 ⊆ 𝐹 → tpos 𝐺 ⊆ tpos 𝐹) | |
| 6 | 4, 5 | syl 14 | . 2 ⊢ (𝐹 = 𝐺 → tpos 𝐺 ⊆ tpos 𝐹) |
| 7 | 3, 6 | eqssd 3211 | 1 ⊢ (𝐹 = 𝐺 → tpos 𝐹 = tpos 𝐺) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ⊆ wss 3167 tpos ctpos 6337 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-br 4048 df-opab 4110 df-mpt 4111 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-res 4691 df-tpos 6338 |
| This theorem is referenced by: tposeqd 6341 tposeqi 6370 |
| Copyright terms: Public domain | W3C validator |