ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tposeq GIF version

Theorem tposeq 6300
Description: Equality theorem for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
tposeq (𝐹 = 𝐺 → tpos 𝐹 = tpos 𝐺)

Proof of Theorem tposeq
StepHypRef Expression
1 eqimss 3233 . . 3 (𝐹 = 𝐺𝐹𝐺)
2 tposss 6299 . . 3 (𝐹𝐺 → tpos 𝐹 ⊆ tpos 𝐺)
31, 2syl 14 . 2 (𝐹 = 𝐺 → tpos 𝐹 ⊆ tpos 𝐺)
4 eqimss2 3234 . . 3 (𝐹 = 𝐺𝐺𝐹)
5 tposss 6299 . . 3 (𝐺𝐹 → tpos 𝐺 ⊆ tpos 𝐹)
64, 5syl 14 . 2 (𝐹 = 𝐺 → tpos 𝐺 ⊆ tpos 𝐹)
73, 6eqssd 3196 1 (𝐹 = 𝐺 → tpos 𝐹 = tpos 𝐺)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wss 3153  tpos ctpos 6297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-mpt 4092  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-res 4671  df-tpos 6298
This theorem is referenced by:  tposeqd  6301  tposeqi  6330
  Copyright terms: Public domain W3C validator