ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tposeq GIF version

Theorem tposeq 6314
Description: Equality theorem for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
tposeq (𝐹 = 𝐺 → tpos 𝐹 = tpos 𝐺)

Proof of Theorem tposeq
StepHypRef Expression
1 eqimss 3238 . . 3 (𝐹 = 𝐺𝐹𝐺)
2 tposss 6313 . . 3 (𝐹𝐺 → tpos 𝐹 ⊆ tpos 𝐺)
31, 2syl 14 . 2 (𝐹 = 𝐺 → tpos 𝐹 ⊆ tpos 𝐺)
4 eqimss2 3239 . . 3 (𝐹 = 𝐺𝐺𝐹)
5 tposss 6313 . . 3 (𝐺𝐹 → tpos 𝐺 ⊆ tpos 𝐹)
64, 5syl 14 . 2 (𝐹 = 𝐺 → tpos 𝐺 ⊆ tpos 𝐹)
73, 6eqssd 3201 1 (𝐹 = 𝐺 → tpos 𝐹 = tpos 𝐺)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wss 3157  tpos ctpos 6311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035  df-opab 4096  df-mpt 4097  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-res 4676  df-tpos 6312
This theorem is referenced by:  tposeqd  6315  tposeqi  6344
  Copyright terms: Public domain W3C validator