ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unielrel Unicode version

Theorem unielrel 5131
Description: The membership relation for a relation is inherited by class union. (Contributed by NM, 17-Sep-2006.)
Assertion
Ref Expression
unielrel  |-  ( ( Rel  R  /\  A  e.  R )  ->  U. A  e.  U. R )

Proof of Theorem unielrel
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elrel 4706 . 2  |-  ( ( Rel  R  /\  A  e.  R )  ->  E. x E. y  A  =  <. x ,  y >.
)
2 simpr 109 . 2  |-  ( ( Rel  R  /\  A  e.  R )  ->  A  e.  R )
3 vex 2729 . . . . . 6  |-  x  e. 
_V
4 vex 2729 . . . . . 6  |-  y  e. 
_V
53, 4uniopel 4234 . . . . 5  |-  ( <.
x ,  y >.  e.  R  ->  U. <. x ,  y >.  e.  U. R )
65a1i 9 . . . 4  |-  ( A  =  <. x ,  y
>.  ->  ( <. x ,  y >.  e.  R  ->  U. <. x ,  y
>.  e.  U. R ) )
7 eleq1 2229 . . . 4  |-  ( A  =  <. x ,  y
>.  ->  ( A  e.  R  <->  <. x ,  y
>.  e.  R ) )
8 unieq 3798 . . . . 5  |-  ( A  =  <. x ,  y
>.  ->  U. A  =  U. <. x ,  y >.
)
98eleq1d 2235 . . . 4  |-  ( A  =  <. x ,  y
>.  ->  ( U. A  e.  U. R  <->  U. <. x ,  y >.  e.  U. R ) )
106, 7, 93imtr4d 202 . . 3  |-  ( A  =  <. x ,  y
>.  ->  ( A  e.  R  ->  U. A  e. 
U. R ) )
1110exlimivv 1884 . 2  |-  ( E. x E. y  A  =  <. x ,  y
>.  ->  ( A  e.  R  ->  U. A  e. 
U. R ) )
121, 2, 11sylc 62 1  |-  ( ( Rel  R  /\  A  e.  R )  ->  U. A  e.  U. R )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343   E.wex 1480    e. wcel 2136   <.cop 3579   U.cuni 3789   Rel wrel 4609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-opab 4044  df-xp 4610  df-rel 4611
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator