| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unielrel | Unicode version | ||
| Description: The membership relation for a relation is inherited by class union. (Contributed by NM, 17-Sep-2006.) |
| Ref | Expression |
|---|---|
| unielrel |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrel 4820 |
. 2
| |
| 2 | simpr 110 |
. 2
| |
| 3 | vex 2802 |
. . . . . 6
| |
| 4 | vex 2802 |
. . . . . 6
| |
| 5 | 3, 4 | uniopel 4342 |
. . . . 5
|
| 6 | 5 | a1i 9 |
. . . 4
|
| 7 | eleq1 2292 |
. . . 4
| |
| 8 | unieq 3896 |
. . . . 5
| |
| 9 | 8 | eleq1d 2298 |
. . . 4
|
| 10 | 6, 7, 9 | 3imtr4d 203 |
. . 3
|
| 11 | 10 | exlimivv 1943 |
. 2
|
| 12 | 1, 2, 11 | sylc 62 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-opab 4145 df-xp 4724 df-rel 4725 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |