ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unielrel Unicode version

Theorem unielrel 5255
Description: The membership relation for a relation is inherited by class union. (Contributed by NM, 17-Sep-2006.)
Assertion
Ref Expression
unielrel  |-  ( ( Rel  R  /\  A  e.  R )  ->  U. A  e.  U. R )

Proof of Theorem unielrel
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elrel 4820 . 2  |-  ( ( Rel  R  /\  A  e.  R )  ->  E. x E. y  A  =  <. x ,  y >.
)
2 simpr 110 . 2  |-  ( ( Rel  R  /\  A  e.  R )  ->  A  e.  R )
3 vex 2802 . . . . . 6  |-  x  e. 
_V
4 vex 2802 . . . . . 6  |-  y  e. 
_V
53, 4uniopel 4342 . . . . 5  |-  ( <.
x ,  y >.  e.  R  ->  U. <. x ,  y >.  e.  U. R )
65a1i 9 . . . 4  |-  ( A  =  <. x ,  y
>.  ->  ( <. x ,  y >.  e.  R  ->  U. <. x ,  y
>.  e.  U. R ) )
7 eleq1 2292 . . . 4  |-  ( A  =  <. x ,  y
>.  ->  ( A  e.  R  <->  <. x ,  y
>.  e.  R ) )
8 unieq 3896 . . . . 5  |-  ( A  =  <. x ,  y
>.  ->  U. A  =  U. <. x ,  y >.
)
98eleq1d 2298 . . . 4  |-  ( A  =  <. x ,  y
>.  ->  ( U. A  e.  U. R  <->  U. <. x ,  y >.  e.  U. R ) )
106, 7, 93imtr4d 203 . . 3  |-  ( A  =  <. x ,  y
>.  ->  ( A  e.  R  ->  U. A  e. 
U. R ) )
1110exlimivv 1943 . 2  |-  ( E. x E. y  A  =  <. x ,  y
>.  ->  ( A  e.  R  ->  U. A  e. 
U. R ) )
121, 2, 11sylc 62 1  |-  ( ( Rel  R  /\  A  e.  R )  ->  U. A  e.  U. R )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395   E.wex 1538    e. wcel 2200   <.cop 3669   U.cuni 3887   Rel wrel 4723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-opab 4145  df-xp 4724  df-rel 4725
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator