ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniopel GIF version

Theorem uniopel 4343
Description: Ordered pair membership is inherited by class union. (Contributed by NM, 13-May-2008.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
opthw.1 𝐴 ∈ V
opthw.2 𝐵 ∈ V
Assertion
Ref Expression
uniopel (⟨𝐴, 𝐵⟩ ∈ 𝐶𝐴, 𝐵⟩ ∈ 𝐶)

Proof of Theorem uniopel
StepHypRef Expression
1 opthw.1 . . . 4 𝐴 ∈ V
2 opthw.2 . . . 4 𝐵 ∈ V
31, 2uniop 4342 . . 3 𝐴, 𝐵⟩ = {𝐴, 𝐵}
41, 2opi2 4319 . . 3 {𝐴, 𝐵} ∈ ⟨𝐴, 𝐵
53, 4eqeltri 2302 . 2 𝐴, 𝐵⟩ ∈ ⟨𝐴, 𝐵
6 elssuni 3916 . . 3 (⟨𝐴, 𝐵⟩ ∈ 𝐶 → ⟨𝐴, 𝐵⟩ ⊆ 𝐶)
76sseld 3223 . 2 (⟨𝐴, 𝐵⟩ ∈ 𝐶 → (𝐴, 𝐵⟩ ∈ ⟨𝐴, 𝐵⟩ → 𝐴, 𝐵⟩ ∈ 𝐶))
85, 7mpi 15 1 (⟨𝐴, 𝐵⟩ ∈ 𝐶𝐴, 𝐵⟩ ∈ 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2200  Vcvv 2799  {cpr 3667  cop 3669   cuni 3888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889
This theorem is referenced by:  dmrnssfld  4987  unielrel  5256
  Copyright terms: Public domain W3C validator