![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > uniopel | GIF version |
Description: Ordered pair membership is inherited by class union. (Contributed by NM, 13-May-2008.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
opthw.1 | ⊢ 𝐴 ∈ V |
opthw.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
uniopel | ⊢ (⟨𝐴, 𝐵⟩ ∈ 𝐶 → ∪ ⟨𝐴, 𝐵⟩ ∈ ∪ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opthw.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | opthw.2 | . . . 4 ⊢ 𝐵 ∈ V | |
3 | 1, 2 | uniop 4257 | . . 3 ⊢ ∪ ⟨𝐴, 𝐵⟩ = {𝐴, 𝐵} |
4 | 1, 2 | opi2 4235 | . . 3 ⊢ {𝐴, 𝐵} ∈ ⟨𝐴, 𝐵⟩ |
5 | 3, 4 | eqeltri 2250 | . 2 ⊢ ∪ ⟨𝐴, 𝐵⟩ ∈ ⟨𝐴, 𝐵⟩ |
6 | elssuni 3839 | . . 3 ⊢ (⟨𝐴, 𝐵⟩ ∈ 𝐶 → ⟨𝐴, 𝐵⟩ ⊆ ∪ 𝐶) | |
7 | 6 | sseld 3156 | . 2 ⊢ (⟨𝐴, 𝐵⟩ ∈ 𝐶 → (∪ ⟨𝐴, 𝐵⟩ ∈ ⟨𝐴, 𝐵⟩ → ∪ ⟨𝐴, 𝐵⟩ ∈ ∪ 𝐶)) |
8 | 5, 7 | mpi 15 | 1 ⊢ (⟨𝐴, 𝐵⟩ ∈ 𝐶 → ∪ ⟨𝐴, 𝐵⟩ ∈ ∪ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2148 Vcvv 2739 {cpr 3595 ⟨cop 3597 ∪ cuni 3811 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-rex 2461 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 |
This theorem is referenced by: dmrnssfld 4892 unielrel 5158 |
Copyright terms: Public domain | W3C validator |