ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniopel GIF version

Theorem uniopel 4234
Description: Ordered pair membership is inherited by class union. (Contributed by NM, 13-May-2008.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
opthw.1 𝐴 ∈ V
opthw.2 𝐵 ∈ V
Assertion
Ref Expression
uniopel (⟨𝐴, 𝐵⟩ ∈ 𝐶𝐴, 𝐵⟩ ∈ 𝐶)

Proof of Theorem uniopel
StepHypRef Expression
1 opthw.1 . . . 4 𝐴 ∈ V
2 opthw.2 . . . 4 𝐵 ∈ V
31, 2uniop 4233 . . 3 𝐴, 𝐵⟩ = {𝐴, 𝐵}
41, 2opi2 4211 . . 3 {𝐴, 𝐵} ∈ ⟨𝐴, 𝐵
53, 4eqeltri 2239 . 2 𝐴, 𝐵⟩ ∈ ⟨𝐴, 𝐵
6 elssuni 3817 . . 3 (⟨𝐴, 𝐵⟩ ∈ 𝐶 → ⟨𝐴, 𝐵⟩ ⊆ 𝐶)
76sseld 3141 . 2 (⟨𝐴, 𝐵⟩ ∈ 𝐶 → (𝐴, 𝐵⟩ ∈ ⟨𝐴, 𝐵⟩ → 𝐴, 𝐵⟩ ∈ 𝐶))
85, 7mpi 15 1 (⟨𝐴, 𝐵⟩ ∈ 𝐶𝐴, 𝐵⟩ ∈ 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2136  Vcvv 2726  {cpr 3577  cop 3579   cuni 3789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790
This theorem is referenced by:  dmrnssfld  4867  unielrel  5131
  Copyright terms: Public domain W3C validator