ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opabid Unicode version

Theorem opabid 4287
Description: The law of concretion. Special case of Theorem 9.5 of [Quine] p. 61. (Contributed by NM, 14-Apr-1995.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
opabid  |-  ( <.
x ,  y >.  e.  { <. x ,  y
>.  |  ph }  <->  ph )

Proof of Theorem opabid
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 vex 2763 . . 3  |-  x  e. 
_V
2 vex 2763 . . 3  |-  y  e. 
_V
31, 2opex 4259 . 2  |-  <. x ,  y >.  e.  _V
4 copsexg 4274 . . 3  |-  ( z  =  <. x ,  y
>.  ->  ( ph  <->  E. x E. y ( z  = 
<. x ,  y >.  /\  ph ) ) )
54bicomd 141 . 2  |-  ( z  =  <. x ,  y
>.  ->  ( E. x E. y ( z  = 
<. x ,  y >.  /\  ph )  <->  ph ) )
6 df-opab 4092 . 2  |-  { <. x ,  y >.  |  ph }  =  { z  |  E. x E. y
( z  =  <. x ,  y >.  /\  ph ) }
73, 5, 6elab2 2909 1  |-  ( <.
x ,  y >.  e.  { <. x ,  y
>.  |  ph }  <->  ph )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364   E.wex 1503    e. wcel 2164   <.cop 3622   {copab 4090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-opab 4092
This theorem is referenced by:  opabidw  4288  opelopabsb  4291  ssopab2b  4308  dmopab  4874  rnopab  4910  funopab  5290  funco  5295  fvmptss2  5633  f1ompt  5710  ovid  6036  enssdom  6818
  Copyright terms: Public domain W3C validator