ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opabid Unicode version

Theorem opabid 4075
Description: The law of concretion. Special case of Theorem 9.5 of [Quine] p. 61. (Contributed by NM, 14-Apr-1995.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
opabid  |-  ( <.
x ,  y >.  e.  { <. x ,  y
>.  |  ph }  <->  ph )

Proof of Theorem opabid
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 vex 2622 . . 3  |-  x  e. 
_V
2 vex 2622 . . 3  |-  y  e. 
_V
31, 2opex 4047 . 2  |-  <. x ,  y >.  e.  _V
4 copsexg 4062 . . 3  |-  ( z  =  <. x ,  y
>.  ->  ( ph  <->  E. x E. y ( z  = 
<. x ,  y >.  /\  ph ) ) )
54bicomd 139 . 2  |-  ( z  =  <. x ,  y
>.  ->  ( E. x E. y ( z  = 
<. x ,  y >.  /\  ph )  <->  ph ) )
6 df-opab 3892 . 2  |-  { <. x ,  y >.  |  ph }  =  { z  |  E. x E. y
( z  =  <. x ,  y >.  /\  ph ) }
73, 5, 6elab2 2761 1  |-  ( <.
x ,  y >.  e.  { <. x ,  y
>.  |  ph }  <->  ph )
Colors of variables: wff set class
Syntax hints:    /\ wa 102    <-> wb 103    = wceq 1289   E.wex 1426    e. wcel 1438   <.cop 3444   {copab 3890
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-v 2621  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-opab 3892
This theorem is referenced by:  opelopabsb  4078  ssopab2b  4094  dmopab  4635  rnopab  4670  funopab  5035  funco  5040  fvmptss2  5363  f1ompt  5434  ovid  5743  enssdom  6459
  Copyright terms: Public domain W3C validator