| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opabid | Unicode version | ||
| Description: The law of concretion. Special case of Theorem 9.5 of [Quine] p. 61. (Contributed by NM, 14-Apr-1995.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| opabid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2775 |
. . 3
| |
| 2 | vex 2775 |
. . 3
| |
| 3 | 1, 2 | opex 4273 |
. 2
|
| 4 | copsexg 4288 |
. . 3
| |
| 5 | 4 | bicomd 141 |
. 2
|
| 6 | df-opab 4106 |
. 2
| |
| 7 | 3, 5, 6 | elab2 2921 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-opab 4106 |
| This theorem is referenced by: opabidw 4303 opelopabsb 4306 ssopab2b 4323 dmopab 4889 rnopab 4925 funopab 5306 funco 5311 fvmptss2 5654 f1ompt 5731 ovid 6062 enssdom 6853 |
| Copyright terms: Public domain | W3C validator |