ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opswapg Unicode version

Theorem opswapg 5156
Description: Swap the members of an ordered pair. (Contributed by Jim Kingdon, 16-Dec-2018.)
Assertion
Ref Expression
opswapg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  U. `' { <. A ,  B >. }  =  <. B ,  A >. )

Proof of Theorem opswapg
StepHypRef Expression
1 cnvsng 5155 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  `' { <. A ,  B >. }  =  { <. B ,  A >. } )
21unieqd 3850 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  U. `' { <. A ,  B >. }  =  U. { <. B ,  A >. } )
3 elex 2774 . . . 4  |-  ( B  e.  W  ->  B  e.  _V )
4 elex 2774 . . . 4  |-  ( A  e.  V  ->  A  e.  _V )
5 opexg 4261 . . . 4  |-  ( ( B  e.  _V  /\  A  e.  _V )  -> 
<. B ,  A >.  e. 
_V )
63, 4, 5syl2anr 290 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  -> 
<. B ,  A >.  e. 
_V )
7 unisng 3856 . . 3  |-  ( <. B ,  A >.  e. 
_V  ->  U. { <. B ,  A >. }  =  <. B ,  A >. )
86, 7syl 14 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  U. { <. B ,  A >. }  =  <. B ,  A >. )
92, 8eqtrd 2229 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  U. `' { <. A ,  B >. }  =  <. B ,  A >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   _Vcvv 2763   {csn 3622   <.cop 3625   U.cuni 3839   `'ccnv 4662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-xp 4669  df-rel 4670  df-cnv 4671
This theorem is referenced by:  2nd1st  6238  cnvf1olem  6282  brtposg  6312  dftpos4  6321  tpostpos  6322  xpcomco  6885  fsumcnv  11602  fprodcnv  11790  txswaphmeolem  14556
  Copyright terms: Public domain W3C validator