Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > unisucg | Unicode version |
Description: A transitive class is equal to the union of its successor. Combines Theorem 4E of [Enderton] p. 72 and Exercise 6 of [Enderton] p. 73. (Contributed by Jim Kingdon, 18-Aug-2019.) |
Ref | Expression |
---|---|
unisucg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-tr 4063 | . . 3 | |
2 | ssequn1 3277 | . . 3 | |
3 | 1, 2 | bitri 183 | . 2 |
4 | df-suc 4330 | . . . . . 6 | |
5 | 4 | unieqi 3782 | . . . . 5 |
6 | uniun 3791 | . . . . 5 | |
7 | 5, 6 | eqtri 2178 | . . . 4 |
8 | unisng 3789 | . . . . 5 | |
9 | 8 | uneq2d 3261 | . . . 4 |
10 | 7, 9 | syl5eq 2202 | . . 3 |
11 | 10 | eqeq1d 2166 | . 2 |
12 | 3, 11 | bitr4id 198 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1335 wcel 2128 cun 3100 wss 3102 csn 3560 cuni 3772 wtr 4062 csuc 4324 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-rex 2441 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-sn 3566 df-pr 3567 df-uni 3773 df-tr 4063 df-suc 4330 |
This theorem is referenced by: onsucuni2 4521 nlimsucg 4523 ctmlemr 7042 nnsf 13538 peano4nninf 13539 |
Copyright terms: Public domain | W3C validator |