ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unisucg Unicode version

Theorem unisucg 4461
Description: A transitive class is equal to the union of its successor. Combines Theorem 4E of [Enderton] p. 72 and Exercise 6 of [Enderton] p. 73. (Contributed by Jim Kingdon, 18-Aug-2019.)
Assertion
Ref Expression
unisucg  |-  ( A  e.  V  ->  ( Tr  A  <->  U. suc  A  =  A ) )

Proof of Theorem unisucg
StepHypRef Expression
1 df-tr 4143 . . 3  |-  ( Tr  A  <->  U. A  C_  A
)
2 ssequn1 3343 . . 3  |-  ( U. A  C_  A  <->  ( U. A  u.  A )  =  A )
31, 2bitri 184 . 2  |-  ( Tr  A  <->  ( U. A  u.  A )  =  A )
4 df-suc 4418 . . . . . 6  |-  suc  A  =  ( A  u.  { A } )
54unieqi 3860 . . . . 5  |-  U. suc  A  =  U. ( A  u.  { A }
)
6 uniun 3869 . . . . 5  |-  U. ( A  u.  { A } )  =  ( U. A  u.  U. { A } )
75, 6eqtri 2226 . . . 4  |-  U. suc  A  =  ( U. A  u.  U. { A }
)
8 unisng 3867 . . . . 5  |-  ( A  e.  V  ->  U. { A }  =  A
)
98uneq2d 3327 . . . 4  |-  ( A  e.  V  ->  ( U. A  u.  U. { A } )  =  ( U. A  u.  A
) )
107, 9eqtrid 2250 . . 3  |-  ( A  e.  V  ->  U. suc  A  =  ( U. A  u.  A ) )
1110eqeq1d 2214 . 2  |-  ( A  e.  V  ->  ( U. suc  A  =  A  <-> 
( U. A  u.  A )  =  A ) )
123, 11bitr4id 199 1  |-  ( A  e.  V  ->  ( Tr  A  <->  U. suc  A  =  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373    e. wcel 2176    u. cun 3164    C_ wss 3166   {csn 3633   U.cuni 3850   Tr wtr 4142   suc csuc 4412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-sn 3639  df-pr 3640  df-uni 3851  df-tr 4143  df-suc 4418
This theorem is referenced by:  onsucuni2  4612  nlimsucg  4614  ctmlemr  7210  nnnninfeq2  7231  nnsf  15942  peano4nninf  15943  nnnninfex  15959
  Copyright terms: Public domain W3C validator