ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unisucg Unicode version

Theorem unisucg 4505
Description: A transitive class is equal to the union of its successor. Combines Theorem 4E of [Enderton] p. 72 and Exercise 6 of [Enderton] p. 73. (Contributed by Jim Kingdon, 18-Aug-2019.)
Assertion
Ref Expression
unisucg  |-  ( A  e.  V  ->  ( Tr  A  <->  U. suc  A  =  A ) )

Proof of Theorem unisucg
StepHypRef Expression
1 df-tr 4183 . . 3  |-  ( Tr  A  <->  U. A  C_  A
)
2 ssequn1 3374 . . 3  |-  ( U. A  C_  A  <->  ( U. A  u.  A )  =  A )
31, 2bitri 184 . 2  |-  ( Tr  A  <->  ( U. A  u.  A )  =  A )
4 df-suc 4462 . . . . . 6  |-  suc  A  =  ( A  u.  { A } )
54unieqi 3898 . . . . 5  |-  U. suc  A  =  U. ( A  u.  { A }
)
6 uniun 3907 . . . . 5  |-  U. ( A  u.  { A } )  =  ( U. A  u.  U. { A } )
75, 6eqtri 2250 . . . 4  |-  U. suc  A  =  ( U. A  u.  U. { A }
)
8 unisng 3905 . . . . 5  |-  ( A  e.  V  ->  U. { A }  =  A
)
98uneq2d 3358 . . . 4  |-  ( A  e.  V  ->  ( U. A  u.  U. { A } )  =  ( U. A  u.  A
) )
107, 9eqtrid 2274 . . 3  |-  ( A  e.  V  ->  U. suc  A  =  ( U. A  u.  A ) )
1110eqeq1d 2238 . 2  |-  ( A  e.  V  ->  ( U. suc  A  =  A  <-> 
( U. A  u.  A )  =  A ) )
123, 11bitr4id 199 1  |-  ( A  e.  V  ->  ( Tr  A  <->  U. suc  A  =  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1395    e. wcel 2200    u. cun 3195    C_ wss 3197   {csn 3666   U.cuni 3888   Tr wtr 4182   suc csuc 4456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-uni 3889  df-tr 4183  df-suc 4462
This theorem is referenced by:  onsucuni2  4656  nlimsucg  4658  ctmlemr  7275  nnnninfeq2  7296  nnsf  16371  peano4nninf  16372  nnnninfex  16388
  Copyright terms: Public domain W3C validator