| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unisucg | Unicode version | ||
| Description: A transitive class is equal to the union of its successor. Combines Theorem 4E of [Enderton] p. 72 and Exercise 6 of [Enderton] p. 73. (Contributed by Jim Kingdon, 18-Aug-2019.) |
| Ref | Expression |
|---|---|
| unisucg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tr 4159 |
. . 3
| |
| 2 | ssequn1 3351 |
. . 3
| |
| 3 | 1, 2 | bitri 184 |
. 2
|
| 4 | df-suc 4436 |
. . . . . 6
| |
| 5 | 4 | unieqi 3874 |
. . . . 5
|
| 6 | uniun 3883 |
. . . . 5
| |
| 7 | 5, 6 | eqtri 2228 |
. . . 4
|
| 8 | unisng 3881 |
. . . . 5
| |
| 9 | 8 | uneq2d 3335 |
. . . 4
|
| 10 | 7, 9 | eqtrid 2252 |
. . 3
|
| 11 | 10 | eqeq1d 2216 |
. 2
|
| 12 | 3, 11 | bitr4id 199 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-sn 3649 df-pr 3650 df-uni 3865 df-tr 4159 df-suc 4436 |
| This theorem is referenced by: onsucuni2 4630 nlimsucg 4632 ctmlemr 7236 nnnninfeq2 7257 nnsf 16144 peano4nninf 16145 nnnninfex 16161 |
| Copyright terms: Public domain | W3C validator |