Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > unisucg | Unicode version |
Description: A transitive class is equal to the union of its successor. Combines Theorem 4E of [Enderton] p. 72 and Exercise 6 of [Enderton] p. 73. (Contributed by Jim Kingdon, 18-Aug-2019.) |
Ref | Expression |
---|---|
unisucg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-tr 4081 | . . 3 | |
2 | ssequn1 3292 | . . 3 | |
3 | 1, 2 | bitri 183 | . 2 |
4 | df-suc 4349 | . . . . . 6 | |
5 | 4 | unieqi 3799 | . . . . 5 |
6 | uniun 3808 | . . . . 5 | |
7 | 5, 6 | eqtri 2186 | . . . 4 |
8 | unisng 3806 | . . . . 5 | |
9 | 8 | uneq2d 3276 | . . . 4 |
10 | 7, 9 | syl5eq 2211 | . . 3 |
11 | 10 | eqeq1d 2174 | . 2 |
12 | 3, 11 | bitr4id 198 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1343 wcel 2136 cun 3114 wss 3116 csn 3576 cuni 3789 wtr 4080 csuc 4343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-uni 3790 df-tr 4081 df-suc 4349 |
This theorem is referenced by: onsucuni2 4541 nlimsucg 4543 ctmlemr 7073 nnnninfeq2 7093 nnsf 13895 peano4nninf 13896 |
Copyright terms: Public domain | W3C validator |