| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unisucg | Unicode version | ||
| Description: A transitive class is equal to the union of its successor. Combines Theorem 4E of [Enderton] p. 72 and Exercise 6 of [Enderton] p. 73. (Contributed by Jim Kingdon, 18-Aug-2019.) |
| Ref | Expression |
|---|---|
| unisucg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tr 4183 |
. . 3
| |
| 2 | ssequn1 3374 |
. . 3
| |
| 3 | 1, 2 | bitri 184 |
. 2
|
| 4 | df-suc 4462 |
. . . . . 6
| |
| 5 | 4 | unieqi 3898 |
. . . . 5
|
| 6 | uniun 3907 |
. . . . 5
| |
| 7 | 5, 6 | eqtri 2250 |
. . . 4
|
| 8 | unisng 3905 |
. . . . 5
| |
| 9 | 8 | uneq2d 3358 |
. . . 4
|
| 10 | 7, 9 | eqtrid 2274 |
. . 3
|
| 11 | 10 | eqeq1d 2238 |
. 2
|
| 12 | 3, 11 | bitr4id 199 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-uni 3889 df-tr 4183 df-suc 4462 |
| This theorem is referenced by: onsucuni2 4656 nlimsucg 4658 ctmlemr 7275 nnnninfeq2 7296 nnsf 16371 peano4nninf 16372 nnnninfex 16388 |
| Copyright terms: Public domain | W3C validator |