ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unisucg Unicode version

Theorem unisucg 4331
Description: A transitive class is equal to the union of its successor. Combines Theorem 4E of [Enderton] p. 72 and Exercise 6 of [Enderton] p. 73. (Contributed by Jim Kingdon, 18-Aug-2019.)
Assertion
Ref Expression
unisucg  |-  ( A  e.  V  ->  ( Tr  A  <->  U. suc  A  =  A ) )

Proof of Theorem unisucg
StepHypRef Expression
1 df-suc 4288 . . . . . 6  |-  suc  A  =  ( A  u.  { A } )
21unieqi 3741 . . . . 5  |-  U. suc  A  =  U. ( A  u.  { A }
)
3 uniun 3750 . . . . 5  |-  U. ( A  u.  { A } )  =  ( U. A  u.  U. { A } )
42, 3eqtri 2158 . . . 4  |-  U. suc  A  =  ( U. A  u.  U. { A }
)
5 unisng 3748 . . . . 5  |-  ( A  e.  V  ->  U. { A }  =  A
)
65uneq2d 3225 . . . 4  |-  ( A  e.  V  ->  ( U. A  u.  U. { A } )  =  ( U. A  u.  A
) )
74, 6syl5eq 2182 . . 3  |-  ( A  e.  V  ->  U. suc  A  =  ( U. A  u.  A ) )
87eqeq1d 2146 . 2  |-  ( A  e.  V  ->  ( U. suc  A  =  A  <-> 
( U. A  u.  A )  =  A ) )
9 df-tr 4022 . . 3  |-  ( Tr  A  <->  U. A  C_  A
)
10 ssequn1 3241 . . 3  |-  ( U. A  C_  A  <->  ( U. A  u.  A )  =  A )
119, 10bitri 183 . 2  |-  ( Tr  A  <->  ( U. A  u.  A )  =  A )
128, 11syl6rbbr 198 1  |-  ( A  e.  V  ->  ( Tr  A  <->  U. suc  A  =  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1331    e. wcel 1480    u. cun 3064    C_ wss 3066   {csn 3522   U.cuni 3731   Tr wtr 4021   suc csuc 4282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-rex 2420  df-v 2683  df-un 3070  df-in 3072  df-ss 3079  df-sn 3528  df-pr 3529  df-uni 3732  df-tr 4022  df-suc 4288
This theorem is referenced by:  onsucuni2  4474  nlimsucg  4476  ctmlemr  6986  nnsf  13188  peano4nninf  13189
  Copyright terms: Public domain W3C validator