ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unisucg Unicode version

Theorem unisucg 4392
Description: A transitive class is equal to the union of its successor. Combines Theorem 4E of [Enderton] p. 72 and Exercise 6 of [Enderton] p. 73. (Contributed by Jim Kingdon, 18-Aug-2019.)
Assertion
Ref Expression
unisucg  |-  ( A  e.  V  ->  ( Tr  A  <->  U. suc  A  =  A ) )

Proof of Theorem unisucg
StepHypRef Expression
1 df-tr 4081 . . 3  |-  ( Tr  A  <->  U. A  C_  A
)
2 ssequn1 3292 . . 3  |-  ( U. A  C_  A  <->  ( U. A  u.  A )  =  A )
31, 2bitri 183 . 2  |-  ( Tr  A  <->  ( U. A  u.  A )  =  A )
4 df-suc 4349 . . . . . 6  |-  suc  A  =  ( A  u.  { A } )
54unieqi 3799 . . . . 5  |-  U. suc  A  =  U. ( A  u.  { A }
)
6 uniun 3808 . . . . 5  |-  U. ( A  u.  { A } )  =  ( U. A  u.  U. { A } )
75, 6eqtri 2186 . . . 4  |-  U. suc  A  =  ( U. A  u.  U. { A }
)
8 unisng 3806 . . . . 5  |-  ( A  e.  V  ->  U. { A }  =  A
)
98uneq2d 3276 . . . 4  |-  ( A  e.  V  ->  ( U. A  u.  U. { A } )  =  ( U. A  u.  A
) )
107, 9syl5eq 2211 . . 3  |-  ( A  e.  V  ->  U. suc  A  =  ( U. A  u.  A ) )
1110eqeq1d 2174 . 2  |-  ( A  e.  V  ->  ( U. suc  A  =  A  <-> 
( U. A  u.  A )  =  A ) )
123, 11bitr4id 198 1  |-  ( A  e.  V  ->  ( Tr  A  <->  U. suc  A  =  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1343    e. wcel 2136    u. cun 3114    C_ wss 3116   {csn 3576   U.cuni 3789   Tr wtr 4080   suc csuc 4343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-sn 3582  df-pr 3583  df-uni 3790  df-tr 4081  df-suc 4349
This theorem is referenced by:  onsucuni2  4541  nlimsucg  4543  ctmlemr  7073  nnnninfeq2  7093  nnsf  13895  peano4nninf  13896
  Copyright terms: Public domain W3C validator