ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unisucg Unicode version

Theorem unisucg 4479
Description: A transitive class is equal to the union of its successor. Combines Theorem 4E of [Enderton] p. 72 and Exercise 6 of [Enderton] p. 73. (Contributed by Jim Kingdon, 18-Aug-2019.)
Assertion
Ref Expression
unisucg  |-  ( A  e.  V  ->  ( Tr  A  <->  U. suc  A  =  A ) )

Proof of Theorem unisucg
StepHypRef Expression
1 df-tr 4159 . . 3  |-  ( Tr  A  <->  U. A  C_  A
)
2 ssequn1 3351 . . 3  |-  ( U. A  C_  A  <->  ( U. A  u.  A )  =  A )
31, 2bitri 184 . 2  |-  ( Tr  A  <->  ( U. A  u.  A )  =  A )
4 df-suc 4436 . . . . . 6  |-  suc  A  =  ( A  u.  { A } )
54unieqi 3874 . . . . 5  |-  U. suc  A  =  U. ( A  u.  { A }
)
6 uniun 3883 . . . . 5  |-  U. ( A  u.  { A } )  =  ( U. A  u.  U. { A } )
75, 6eqtri 2228 . . . 4  |-  U. suc  A  =  ( U. A  u.  U. { A }
)
8 unisng 3881 . . . . 5  |-  ( A  e.  V  ->  U. { A }  =  A
)
98uneq2d 3335 . . . 4  |-  ( A  e.  V  ->  ( U. A  u.  U. { A } )  =  ( U. A  u.  A
) )
107, 9eqtrid 2252 . . 3  |-  ( A  e.  V  ->  U. suc  A  =  ( U. A  u.  A ) )
1110eqeq1d 2216 . 2  |-  ( A  e.  V  ->  ( U. suc  A  =  A  <-> 
( U. A  u.  A )  =  A ) )
123, 11bitr4id 199 1  |-  ( A  e.  V  ->  ( Tr  A  <->  U. suc  A  =  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373    e. wcel 2178    u. cun 3172    C_ wss 3174   {csn 3643   U.cuni 3864   Tr wtr 4158   suc csuc 4430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-sn 3649  df-pr 3650  df-uni 3865  df-tr 4159  df-suc 4436
This theorem is referenced by:  onsucuni2  4630  nlimsucg  4632  ctmlemr  7236  nnnninfeq2  7257  nnsf  16144  peano4nninf  16145  nnnninfex  16161
  Copyright terms: Public domain W3C validator