ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unisucg Unicode version

Theorem unisucg 4399
Description: A transitive class is equal to the union of its successor. Combines Theorem 4E of [Enderton] p. 72 and Exercise 6 of [Enderton] p. 73. (Contributed by Jim Kingdon, 18-Aug-2019.)
Assertion
Ref Expression
unisucg  |-  ( A  e.  V  ->  ( Tr  A  <->  U. suc  A  =  A ) )

Proof of Theorem unisucg
StepHypRef Expression
1 df-tr 4088 . . 3  |-  ( Tr  A  <->  U. A  C_  A
)
2 ssequn1 3297 . . 3  |-  ( U. A  C_  A  <->  ( U. A  u.  A )  =  A )
31, 2bitri 183 . 2  |-  ( Tr  A  <->  ( U. A  u.  A )  =  A )
4 df-suc 4356 . . . . . 6  |-  suc  A  =  ( A  u.  { A } )
54unieqi 3806 . . . . 5  |-  U. suc  A  =  U. ( A  u.  { A }
)
6 uniun 3815 . . . . 5  |-  U. ( A  u.  { A } )  =  ( U. A  u.  U. { A } )
75, 6eqtri 2191 . . . 4  |-  U. suc  A  =  ( U. A  u.  U. { A }
)
8 unisng 3813 . . . . 5  |-  ( A  e.  V  ->  U. { A }  =  A
)
98uneq2d 3281 . . . 4  |-  ( A  e.  V  ->  ( U. A  u.  U. { A } )  =  ( U. A  u.  A
) )
107, 9eqtrid 2215 . . 3  |-  ( A  e.  V  ->  U. suc  A  =  ( U. A  u.  A ) )
1110eqeq1d 2179 . 2  |-  ( A  e.  V  ->  ( U. suc  A  =  A  <-> 
( U. A  u.  A )  =  A ) )
123, 11bitr4id 198 1  |-  ( A  e.  V  ->  ( Tr  A  <->  U. suc  A  =  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1348    e. wcel 2141    u. cun 3119    C_ wss 3121   {csn 3583   U.cuni 3796   Tr wtr 4087   suc csuc 4350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-sn 3589  df-pr 3590  df-uni 3797  df-tr 4088  df-suc 4356
This theorem is referenced by:  onsucuni2  4548  nlimsucg  4550  ctmlemr  7085  nnnninfeq2  7105  nnsf  14038  peano4nninf  14039
  Copyright terms: Public domain W3C validator