| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unisucg | Unicode version | ||
| Description: A transitive class is equal to the union of its successor. Combines Theorem 4E of [Enderton] p. 72 and Exercise 6 of [Enderton] p. 73. (Contributed by Jim Kingdon, 18-Aug-2019.) |
| Ref | Expression |
|---|---|
| unisucg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tr 4133 |
. . 3
| |
| 2 | ssequn1 3334 |
. . 3
| |
| 3 | 1, 2 | bitri 184 |
. 2
|
| 4 | df-suc 4407 |
. . . . . 6
| |
| 5 | 4 | unieqi 3850 |
. . . . 5
|
| 6 | uniun 3859 |
. . . . 5
| |
| 7 | 5, 6 | eqtri 2217 |
. . . 4
|
| 8 | unisng 3857 |
. . . . 5
| |
| 9 | 8 | uneq2d 3318 |
. . . 4
|
| 10 | 7, 9 | eqtrid 2241 |
. . 3
|
| 11 | 10 | eqeq1d 2205 |
. 2
|
| 12 | 3, 11 | bitr4id 199 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-uni 3841 df-tr 4133 df-suc 4407 |
| This theorem is referenced by: onsucuni2 4601 nlimsucg 4603 ctmlemr 7183 nnnninfeq2 7204 nnsf 15736 peano4nninf 15737 |
| Copyright terms: Public domain | W3C validator |