ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lss0v Unicode version

Theorem lss0v 14192
Description: The zero vector in a submodule equals the zero vector in the including module. (Contributed by NM, 15-Mar-2015.)
Hypotheses
Ref Expression
lss0v.x  |-  X  =  ( Ws  U )
lss0v.o  |-  .0.  =  ( 0g `  W )
lss0v.z  |-  Z  =  ( 0g `  X
)
lss0v.l  |-  L  =  ( LSubSp `  W )
Assertion
Ref Expression
lss0v  |-  ( ( W  e.  LMod  /\  U  e.  L )  ->  Z  =  .0.  )

Proof of Theorem lss0v
StepHypRef Expression
1 0ss 3499 . . . . 5  |-  (/)  C_  U
2 lss0v.x . . . . . 6  |-  X  =  ( Ws  U )
3 eqid 2205 . . . . . 6  |-  ( LSpan `  W )  =  (
LSpan `  W )
4 eqid 2205 . . . . . 6  |-  ( LSpan `  X )  =  (
LSpan `  X )
5 lss0v.l . . . . . 6  |-  L  =  ( LSubSp `  W )
62, 3, 4, 5lsslsp 14191 . . . . 5  |-  ( ( W  e.  LMod  /\  U  e.  L  /\  (/)  C_  U
)  ->  ( ( LSpan `  X ) `  (/) )  =  ( (
LSpan `  W ) `  (/) ) )
71, 6mp3an3 1339 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  L )  ->  (
( LSpan `  X ) `  (/) )  =  ( ( LSpan `  W ) `  (/) ) )
82, 5lsslmod 14142 . . . . 5  |-  ( ( W  e.  LMod  /\  U  e.  L )  ->  X  e.  LMod )
9 lss0v.z . . . . . 6  |-  Z  =  ( 0g `  X
)
109, 4lsp0 14185 . . . . 5  |-  ( X  e.  LMod  ->  ( (
LSpan `  X ) `  (/) )  =  { Z } )
118, 10syl 14 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  L )  ->  (
( LSpan `  X ) `  (/) )  =  { Z } )
12 lss0v.o . . . . . 6  |-  .0.  =  ( 0g `  W )
1312, 3lsp0 14185 . . . . 5  |-  ( W  e.  LMod  ->  ( (
LSpan `  W ) `  (/) )  =  {  .0.  } )
1413adantr 276 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  L )  ->  (
( LSpan `  W ) `  (/) )  =  {  .0.  } )
157, 11, 143eqtr3d 2246 . . 3  |-  ( ( W  e.  LMod  /\  U  e.  L )  ->  { Z }  =  {  .0.  } )
1615unieqd 3861 . 2  |-  ( ( W  e.  LMod  /\  U  e.  L )  ->  U. { Z }  =  U. {  .0.  } )
17 eqid 2205 . . . 4  |-  ( Base `  X )  =  (
Base `  X )
1817, 9lmod0vcl 14079 . . 3  |-  ( X  e.  LMod  ->  Z  e.  ( Base `  X
) )
19 unisng 3867 . . 3  |-  ( Z  e.  ( Base `  X
)  ->  U. { Z }  =  Z )
208, 18, 193syl 17 . 2  |-  ( ( W  e.  LMod  /\  U  e.  L )  ->  U. { Z }  =  Z
)
21 eqid 2205 . . . . 5  |-  ( Base `  W )  =  (
Base `  W )
2221, 12lmod0vcl 14079 . . . 4  |-  ( W  e.  LMod  ->  .0.  e.  ( Base `  W )
)
23 unisng 3867 . . . 4  |-  (  .0. 
e.  ( Base `  W
)  ->  U. {  .0.  }  =  .0.  )
2422, 23syl 14 . . 3  |-  ( W  e.  LMod  ->  U. {  .0.  }  =  .0.  )
2524adantr 276 . 2  |-  ( ( W  e.  LMod  /\  U  e.  L )  ->  U. {  .0.  }  =  .0.  )
2616, 20, 253eqtr3d 2246 1  |-  ( ( W  e.  LMod  /\  U  e.  L )  ->  Z  =  .0.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176    C_ wss 3166   (/)c0 3460   {csn 3633   U.cuni 3850   ` cfv 5271  (class class class)co 5944   Basecbs 12832   ↾s cress 12833   0gc0g 13088   LModclmod 14049   LSubSpclss 14114   LSpanclspn 14148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-pre-ltirr 8037  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-pnf 8109  df-mnf 8110  df-ltxr 8112  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-5 9098  df-6 9099  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-iress 12840  df-plusg 12922  df-mulr 12923  df-sca 12925  df-vsca 12926  df-0g 13090  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-grp 13335  df-minusg 13336  df-sbg 13337  df-subg 13506  df-mgp 13683  df-ur 13722  df-ring 13760  df-lmod 14051  df-lssm 14115  df-lsp 14149
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator