ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniss GIF version

Theorem uniss 3856
Description: Subclass relationship for class union. Theorem 61 of [Suppes] p. 39. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
uniss (𝐴𝐵 𝐴 𝐵)

Proof of Theorem uniss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3173 . . . . 5 (𝐴𝐵 → (𝑦𝐴𝑦𝐵))
21anim2d 337 . . . 4 (𝐴𝐵 → ((𝑥𝑦𝑦𝐴) → (𝑥𝑦𝑦𝐵)))
32eximdv 1891 . . 3 (𝐴𝐵 → (∃𝑦(𝑥𝑦𝑦𝐴) → ∃𝑦(𝑥𝑦𝑦𝐵)))
4 eluni 3838 . . 3 (𝑥 𝐴 ↔ ∃𝑦(𝑥𝑦𝑦𝐴))
5 eluni 3838 . . 3 (𝑥 𝐵 ↔ ∃𝑦(𝑥𝑦𝑦𝐵))
63, 4, 53imtr4g 205 . 2 (𝐴𝐵 → (𝑥 𝐴𝑥 𝐵))
76ssrdv 3185 1 (𝐴𝐵 𝐴 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wex 1503  wcel 2164  wss 3153   cuni 3835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-in 3159  df-ss 3166  df-uni 3836
This theorem is referenced by:  unissi  3858  unissd  3859  intssuni2m  3894  relfld  5194  tgcl  14232  distop  14253
  Copyright terms: Public domain W3C validator