Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xpcanm | GIF version |
Description: Cancellation law for cross-product. (Contributed by Jim Kingdon, 14-Dec-2018.) |
Ref | Expression |
---|---|
xpcanm | ⊢ (∃𝑥 𝑥 ∈ 𝐶 → ((𝐶 × 𝐴) = (𝐶 × 𝐵) ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssxp2 5048 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐶 → ((𝐶 × 𝐴) ⊆ (𝐶 × 𝐵) ↔ 𝐴 ⊆ 𝐵)) | |
2 | ssxp2 5048 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐶 → ((𝐶 × 𝐵) ⊆ (𝐶 × 𝐴) ↔ 𝐵 ⊆ 𝐴)) | |
3 | 1, 2 | anbi12d 470 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐶 → (((𝐶 × 𝐴) ⊆ (𝐶 × 𝐵) ∧ (𝐶 × 𝐵) ⊆ (𝐶 × 𝐴)) ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴))) |
4 | eqss 3162 | . 2 ⊢ ((𝐶 × 𝐴) = (𝐶 × 𝐵) ↔ ((𝐶 × 𝐴) ⊆ (𝐶 × 𝐵) ∧ (𝐶 × 𝐵) ⊆ (𝐶 × 𝐴))) | |
5 | eqss 3162 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
6 | 3, 4, 5 | 3bitr4g 222 | 1 ⊢ (∃𝑥 𝑥 ∈ 𝐶 → ((𝐶 × 𝐴) = (𝐶 × 𝐵) ↔ 𝐴 = 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ∃wex 1485 ∈ wcel 2141 ⊆ wss 3121 × cxp 4609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-xp 4617 df-rel 4618 df-cnv 4619 df-dm 4621 df-rn 4622 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |