Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpcanm GIF version

Theorem xpcanm 4978
 Description: Cancellation law for cross-product. (Contributed by Jim Kingdon, 14-Dec-2018.)
Assertion
Ref Expression
xpcanm (∃𝑥 𝑥𝐶 → ((𝐶 × 𝐴) = (𝐶 × 𝐵) ↔ 𝐴 = 𝐵))
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem xpcanm
StepHypRef Expression
1 ssxp2 4976 . . 3 (∃𝑥 𝑥𝐶 → ((𝐶 × 𝐴) ⊆ (𝐶 × 𝐵) ↔ 𝐴𝐵))
2 ssxp2 4976 . . 3 (∃𝑥 𝑥𝐶 → ((𝐶 × 𝐵) ⊆ (𝐶 × 𝐴) ↔ 𝐵𝐴))
31, 2anbi12d 464 . 2 (∃𝑥 𝑥𝐶 → (((𝐶 × 𝐴) ⊆ (𝐶 × 𝐵) ∧ (𝐶 × 𝐵) ⊆ (𝐶 × 𝐴)) ↔ (𝐴𝐵𝐵𝐴)))
4 eqss 3112 . 2 ((𝐶 × 𝐴) = (𝐶 × 𝐵) ↔ ((𝐶 × 𝐴) ⊆ (𝐶 × 𝐵) ∧ (𝐶 × 𝐵) ⊆ (𝐶 × 𝐴)))
5 eqss 3112 . 2 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
63, 4, 53bitr4g 222 1 (∃𝑥 𝑥𝐶 → ((𝐶 × 𝐴) = (𝐶 × 𝐵) ↔ 𝐴 = 𝐵))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   = wceq 1331  ∃wex 1468   ∈ wcel 1480   ⊆ wss 3071   × cxp 4537 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131 This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-br 3930  df-opab 3990  df-xp 4545  df-rel 4546  df-cnv 4547  df-dm 4549  df-rn 4550 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator