ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpcanm GIF version

Theorem xpcanm 5105
Description: Cancellation law for cross-product. (Contributed by Jim Kingdon, 14-Dec-2018.)
Assertion
Ref Expression
xpcanm (∃𝑥 𝑥𝐶 → ((𝐶 × 𝐴) = (𝐶 × 𝐵) ↔ 𝐴 = 𝐵))
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem xpcanm
StepHypRef Expression
1 ssxp2 5103 . . 3 (∃𝑥 𝑥𝐶 → ((𝐶 × 𝐴) ⊆ (𝐶 × 𝐵) ↔ 𝐴𝐵))
2 ssxp2 5103 . . 3 (∃𝑥 𝑥𝐶 → ((𝐶 × 𝐵) ⊆ (𝐶 × 𝐴) ↔ 𝐵𝐴))
31, 2anbi12d 473 . 2 (∃𝑥 𝑥𝐶 → (((𝐶 × 𝐴) ⊆ (𝐶 × 𝐵) ∧ (𝐶 × 𝐵) ⊆ (𝐶 × 𝐴)) ↔ (𝐴𝐵𝐵𝐴)))
4 eqss 3194 . 2 ((𝐶 × 𝐴) = (𝐶 × 𝐵) ↔ ((𝐶 × 𝐴) ⊆ (𝐶 × 𝐵) ∧ (𝐶 × 𝐵) ⊆ (𝐶 × 𝐴)))
5 eqss 3194 . 2 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
63, 4, 53bitr4g 223 1 (∃𝑥 𝑥𝐶 → ((𝐶 × 𝐴) = (𝐶 × 𝐵) ↔ 𝐴 = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wex 1503  wcel 2164  wss 3153   × cxp 4657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-xp 4665  df-rel 4666  df-cnv 4667  df-dm 4669  df-rn 4670
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator