ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpcanm GIF version

Theorem xpcanm 5121
Description: Cancellation law for cross-product. (Contributed by Jim Kingdon, 14-Dec-2018.)
Assertion
Ref Expression
xpcanm (∃𝑥 𝑥𝐶 → ((𝐶 × 𝐴) = (𝐶 × 𝐵) ↔ 𝐴 = 𝐵))
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem xpcanm
StepHypRef Expression
1 ssxp2 5119 . . 3 (∃𝑥 𝑥𝐶 → ((𝐶 × 𝐴) ⊆ (𝐶 × 𝐵) ↔ 𝐴𝐵))
2 ssxp2 5119 . . 3 (∃𝑥 𝑥𝐶 → ((𝐶 × 𝐵) ⊆ (𝐶 × 𝐴) ↔ 𝐵𝐴))
31, 2anbi12d 473 . 2 (∃𝑥 𝑥𝐶 → (((𝐶 × 𝐴) ⊆ (𝐶 × 𝐵) ∧ (𝐶 × 𝐵) ⊆ (𝐶 × 𝐴)) ↔ (𝐴𝐵𝐵𝐴)))
4 eqss 3207 . 2 ((𝐶 × 𝐴) = (𝐶 × 𝐵) ↔ ((𝐶 × 𝐴) ⊆ (𝐶 × 𝐵) ∧ (𝐶 × 𝐵) ⊆ (𝐶 × 𝐴)))
5 eqss 3207 . 2 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
63, 4, 53bitr4g 223 1 (∃𝑥 𝑥𝐶 → ((𝐶 × 𝐴) = (𝐶 × 𝐵) ↔ 𝐴 = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1372  wex 1514  wcel 2175  wss 3165   × cxp 4672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-xp 4680  df-rel 4681  df-cnv 4682  df-dm 4684  df-rn 4685
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator