| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpm | GIF version | ||
| Description: The cross product of inhabited classes is inhabited. (Contributed by Jim Kingdon, 13-Dec-2018.) |
| Ref | Expression |
|---|---|
| xpm | ⊢ ((∃𝑥 𝑥 ∈ 𝐴 ∧ ∃𝑦 𝑦 ∈ 𝐵) ↔ ∃𝑧 𝑧 ∈ (𝐴 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpmlem 5109 | . 2 ⊢ ((∃𝑎 𝑎 ∈ 𝐴 ∧ ∃𝑏 𝑏 ∈ 𝐵) ↔ ∃𝑤 𝑤 ∈ (𝐴 × 𝐵)) | |
| 2 | eleq1 2269 | . . . 4 ⊢ (𝑎 = 𝑥 → (𝑎 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) | |
| 3 | 2 | cbvexv 1943 | . . 3 ⊢ (∃𝑎 𝑎 ∈ 𝐴 ↔ ∃𝑥 𝑥 ∈ 𝐴) |
| 4 | eleq1 2269 | . . . 4 ⊢ (𝑏 = 𝑦 → (𝑏 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵)) | |
| 5 | 4 | cbvexv 1943 | . . 3 ⊢ (∃𝑏 𝑏 ∈ 𝐵 ↔ ∃𝑦 𝑦 ∈ 𝐵) |
| 6 | 3, 5 | anbi12i 460 | . 2 ⊢ ((∃𝑎 𝑎 ∈ 𝐴 ∧ ∃𝑏 𝑏 ∈ 𝐵) ↔ (∃𝑥 𝑥 ∈ 𝐴 ∧ ∃𝑦 𝑦 ∈ 𝐵)) |
| 7 | eleq1 2269 | . . 3 ⊢ (𝑤 = 𝑧 → (𝑤 ∈ (𝐴 × 𝐵) ↔ 𝑧 ∈ (𝐴 × 𝐵))) | |
| 8 | 7 | cbvexv 1943 | . 2 ⊢ (∃𝑤 𝑤 ∈ (𝐴 × 𝐵) ↔ ∃𝑧 𝑧 ∈ (𝐴 × 𝐵)) |
| 9 | 1, 6, 8 | 3bitr3i 210 | 1 ⊢ ((∃𝑥 𝑥 ∈ 𝐴 ∧ ∃𝑦 𝑦 ∈ 𝐵) ↔ ∃𝑧 𝑧 ∈ (𝐴 × 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∃wex 1516 ∈ wcel 2177 × cxp 4678 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-opab 4111 df-xp 4686 |
| This theorem is referenced by: ssxpbm 5124 xp11m 5127 xpexr2m 5130 unixpm 5224 |
| Copyright terms: Public domain | W3C validator |