ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpm GIF version

Theorem xpm 5087
Description: The cross product of inhabited classes is inhabited. (Contributed by Jim Kingdon, 13-Dec-2018.)
Assertion
Ref Expression
xpm ((∃𝑥 𝑥𝐴 ∧ ∃𝑦 𝑦𝐵) ↔ ∃𝑧 𝑧 ∈ (𝐴 × 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑦,𝐵   𝑧,𝐴   𝑧,𝐵
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑥)

Proof of Theorem xpm
Dummy variables 𝑎 𝑏 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpmlem 5086 . 2 ((∃𝑎 𝑎𝐴 ∧ ∃𝑏 𝑏𝐵) ↔ ∃𝑤 𝑤 ∈ (𝐴 × 𝐵))
2 eleq1 2256 . . . 4 (𝑎 = 𝑥 → (𝑎𝐴𝑥𝐴))
32cbvexv 1930 . . 3 (∃𝑎 𝑎𝐴 ↔ ∃𝑥 𝑥𝐴)
4 eleq1 2256 . . . 4 (𝑏 = 𝑦 → (𝑏𝐵𝑦𝐵))
54cbvexv 1930 . . 3 (∃𝑏 𝑏𝐵 ↔ ∃𝑦 𝑦𝐵)
63, 5anbi12i 460 . 2 ((∃𝑎 𝑎𝐴 ∧ ∃𝑏 𝑏𝐵) ↔ (∃𝑥 𝑥𝐴 ∧ ∃𝑦 𝑦𝐵))
7 eleq1 2256 . . 3 (𝑤 = 𝑧 → (𝑤 ∈ (𝐴 × 𝐵) ↔ 𝑧 ∈ (𝐴 × 𝐵)))
87cbvexv 1930 . 2 (∃𝑤 𝑤 ∈ (𝐴 × 𝐵) ↔ ∃𝑧 𝑧 ∈ (𝐴 × 𝐵))
91, 6, 83bitr3i 210 1 ((∃𝑥 𝑥𝐴 ∧ ∃𝑦 𝑦𝐵) ↔ ∃𝑧 𝑧 ∈ (𝐴 × 𝐵))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wex 1503  wcel 2164   × cxp 4657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-opab 4091  df-xp 4665
This theorem is referenced by:  ssxpbm  5101  xp11m  5104  xpexr2m  5107  unixpm  5201
  Copyright terms: Public domain W3C validator