| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > xpm | GIF version | ||
| Description: The cross product of inhabited classes is inhabited. (Contributed by Jim Kingdon, 13-Dec-2018.) | 
| Ref | Expression | 
|---|---|
| xpm | ⊢ ((∃𝑥 𝑥 ∈ 𝐴 ∧ ∃𝑦 𝑦 ∈ 𝐵) ↔ ∃𝑧 𝑧 ∈ (𝐴 × 𝐵)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | xpmlem 5090 | . 2 ⊢ ((∃𝑎 𝑎 ∈ 𝐴 ∧ ∃𝑏 𝑏 ∈ 𝐵) ↔ ∃𝑤 𝑤 ∈ (𝐴 × 𝐵)) | |
| 2 | eleq1 2259 | . . . 4 ⊢ (𝑎 = 𝑥 → (𝑎 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) | |
| 3 | 2 | cbvexv 1933 | . . 3 ⊢ (∃𝑎 𝑎 ∈ 𝐴 ↔ ∃𝑥 𝑥 ∈ 𝐴) | 
| 4 | eleq1 2259 | . . . 4 ⊢ (𝑏 = 𝑦 → (𝑏 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵)) | |
| 5 | 4 | cbvexv 1933 | . . 3 ⊢ (∃𝑏 𝑏 ∈ 𝐵 ↔ ∃𝑦 𝑦 ∈ 𝐵) | 
| 6 | 3, 5 | anbi12i 460 | . 2 ⊢ ((∃𝑎 𝑎 ∈ 𝐴 ∧ ∃𝑏 𝑏 ∈ 𝐵) ↔ (∃𝑥 𝑥 ∈ 𝐴 ∧ ∃𝑦 𝑦 ∈ 𝐵)) | 
| 7 | eleq1 2259 | . . 3 ⊢ (𝑤 = 𝑧 → (𝑤 ∈ (𝐴 × 𝐵) ↔ 𝑧 ∈ (𝐴 × 𝐵))) | |
| 8 | 7 | cbvexv 1933 | . 2 ⊢ (∃𝑤 𝑤 ∈ (𝐴 × 𝐵) ↔ ∃𝑧 𝑧 ∈ (𝐴 × 𝐵)) | 
| 9 | 1, 6, 8 | 3bitr3i 210 | 1 ⊢ ((∃𝑥 𝑥 ∈ 𝐴 ∧ ∃𝑦 𝑦 ∈ 𝐵) ↔ ∃𝑧 𝑧 ∈ (𝐴 × 𝐵)) | 
| Colors of variables: wff set class | 
| Syntax hints: ∧ wa 104 ↔ wb 105 ∃wex 1506 ∈ wcel 2167 × cxp 4661 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-opab 4095 df-xp 4669 | 
| This theorem is referenced by: ssxpbm 5105 xp11m 5108 xpexr2m 5111 unixpm 5205 | 
| Copyright terms: Public domain | W3C validator |