ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpm GIF version

Theorem xpm 5032
Description: The cross product of inhabited classes is inhabited. (Contributed by Jim Kingdon, 13-Dec-2018.)
Assertion
Ref Expression
xpm ((∃𝑥 𝑥𝐴 ∧ ∃𝑦 𝑦𝐵) ↔ ∃𝑧 𝑧 ∈ (𝐴 × 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑦,𝐵   𝑧,𝐴   𝑧,𝐵
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑥)

Proof of Theorem xpm
Dummy variables 𝑎 𝑏 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpmlem 5031 . 2 ((∃𝑎 𝑎𝐴 ∧ ∃𝑏 𝑏𝐵) ↔ ∃𝑤 𝑤 ∈ (𝐴 × 𝐵))
2 eleq1 2233 . . . 4 (𝑎 = 𝑥 → (𝑎𝐴𝑥𝐴))
32cbvexv 1911 . . 3 (∃𝑎 𝑎𝐴 ↔ ∃𝑥 𝑥𝐴)
4 eleq1 2233 . . . 4 (𝑏 = 𝑦 → (𝑏𝐵𝑦𝐵))
54cbvexv 1911 . . 3 (∃𝑏 𝑏𝐵 ↔ ∃𝑦 𝑦𝐵)
63, 5anbi12i 457 . 2 ((∃𝑎 𝑎𝐴 ∧ ∃𝑏 𝑏𝐵) ↔ (∃𝑥 𝑥𝐴 ∧ ∃𝑦 𝑦𝐵))
7 eleq1 2233 . . 3 (𝑤 = 𝑧 → (𝑤 ∈ (𝐴 × 𝐵) ↔ 𝑧 ∈ (𝐴 × 𝐵)))
87cbvexv 1911 . 2 (∃𝑤 𝑤 ∈ (𝐴 × 𝐵) ↔ ∃𝑧 𝑧 ∈ (𝐴 × 𝐵))
91, 6, 83bitr3i 209 1 ((∃𝑥 𝑥𝐴 ∧ ∃𝑦 𝑦𝐵) ↔ ∃𝑧 𝑧 ∈ (𝐴 × 𝐵))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  wex 1485  wcel 2141   × cxp 4609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-opab 4051  df-xp 4617
This theorem is referenced by:  ssxpbm  5046  xp11m  5049  xpexr2m  5052  unixpm  5146
  Copyright terms: Public domain W3C validator