ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssxpbm Unicode version

Theorem ssxpbm 5101
Description: A cross-product subclass relationship is equivalent to the relationship for its components. (Contributed by Jim Kingdon, 12-Dec-2018.)
Assertion
Ref Expression
ssxpbm  |-  ( E. x  x  e.  ( A  X.  B )  ->  ( ( A  X.  B )  C_  ( C  X.  D
)  <->  ( A  C_  C  /\  B  C_  D
) ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hints:    C( x)    D( x)

Proof of Theorem ssxpbm
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpm 5087 . . . . . . . 8  |-  ( ( E. a  a  e.  A  /\  E. b 
b  e.  B )  <->  E. x  x  e.  ( A  X.  B
) )
2 dmxpm 4882 . . . . . . . . 9  |-  ( E. b  b  e.  B  ->  dom  ( A  X.  B )  =  A )
32adantl 277 . . . . . . . 8  |-  ( ( E. a  a  e.  A  /\  E. b 
b  e.  B )  ->  dom  ( A  X.  B )  =  A )
41, 3sylbir 135 . . . . . . 7  |-  ( E. x  x  e.  ( A  X.  B )  ->  dom  ( A  X.  B )  =  A )
54adantr 276 . . . . . 6  |-  ( ( E. x  x  e.  ( A  X.  B
)  /\  ( A  X.  B )  C_  ( C  X.  D ) )  ->  dom  ( A  X.  B )  =  A )
6 dmss 4861 . . . . . . 7  |-  ( ( A  X.  B ) 
C_  ( C  X.  D )  ->  dom  ( A  X.  B
)  C_  dom  ( C  X.  D ) )
76adantl 277 . . . . . 6  |-  ( ( E. x  x  e.  ( A  X.  B
)  /\  ( A  X.  B )  C_  ( C  X.  D ) )  ->  dom  ( A  X.  B )  C_  dom  ( C  X.  D
) )
85, 7eqsstrrd 3216 . . . . 5  |-  ( ( E. x  x  e.  ( A  X.  B
)  /\  ( A  X.  B )  C_  ( C  X.  D ) )  ->  A  C_  dom  ( C  X.  D
) )
9 dmxpss 5096 . . . . 5  |-  dom  ( C  X.  D )  C_  C
108, 9sstrdi 3191 . . . 4  |-  ( ( E. x  x  e.  ( A  X.  B
)  /\  ( A  X.  B )  C_  ( C  X.  D ) )  ->  A  C_  C
)
11 rnxpm 5095 . . . . . . . . 9  |-  ( E. a  a  e.  A  ->  ran  ( A  X.  B )  =  B )
1211adantr 276 . . . . . . . 8  |-  ( ( E. a  a  e.  A  /\  E. b 
b  e.  B )  ->  ran  ( A  X.  B )  =  B )
131, 12sylbir 135 . . . . . . 7  |-  ( E. x  x  e.  ( A  X.  B )  ->  ran  ( A  X.  B )  =  B )
1413adantr 276 . . . . . 6  |-  ( ( E. x  x  e.  ( A  X.  B
)  /\  ( A  X.  B )  C_  ( C  X.  D ) )  ->  ran  ( A  X.  B )  =  B )
15 rnss 4892 . . . . . . 7  |-  ( ( A  X.  B ) 
C_  ( C  X.  D )  ->  ran  ( A  X.  B
)  C_  ran  ( C  X.  D ) )
1615adantl 277 . . . . . 6  |-  ( ( E. x  x  e.  ( A  X.  B
)  /\  ( A  X.  B )  C_  ( C  X.  D ) )  ->  ran  ( A  X.  B )  C_  ran  ( C  X.  D
) )
1714, 16eqsstrrd 3216 . . . . 5  |-  ( ( E. x  x  e.  ( A  X.  B
)  /\  ( A  X.  B )  C_  ( C  X.  D ) )  ->  B  C_  ran  ( C  X.  D
) )
18 rnxpss 5097 . . . . 5  |-  ran  ( C  X.  D )  C_  D
1917, 18sstrdi 3191 . . . 4  |-  ( ( E. x  x  e.  ( A  X.  B
)  /\  ( A  X.  B )  C_  ( C  X.  D ) )  ->  B  C_  D
)
2010, 19jca 306 . . 3  |-  ( ( E. x  x  e.  ( A  X.  B
)  /\  ( A  X.  B )  C_  ( C  X.  D ) )  ->  ( A  C_  C  /\  B  C_  D
) )
2120ex 115 . 2  |-  ( E. x  x  e.  ( A  X.  B )  ->  ( ( A  X.  B )  C_  ( C  X.  D
)  ->  ( A  C_  C  /\  B  C_  D ) ) )
22 xpss12 4766 . 2  |-  ( ( A  C_  C  /\  B  C_  D )  -> 
( A  X.  B
)  C_  ( C  X.  D ) )
2321, 22impbid1 142 1  |-  ( E. x  x  e.  ( A  X.  B )  ->  ( ( A  X.  B )  C_  ( C  X.  D
)  <->  ( A  C_  C  /\  B  C_  D
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   E.wex 1503    e. wcel 2164    C_ wss 3153    X. cxp 4657   dom cdm 4659   ran crn 4660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-xp 4665  df-rel 4666  df-cnv 4667  df-dm 4669  df-rn 4670
This theorem is referenced by:  xp11m  5104
  Copyright terms: Public domain W3C validator