Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xpiundi | Unicode version |
Description: Distributive law for cross product over indexed union. (Contributed by Mario Carneiro, 27-Apr-2014.) |
Ref | Expression |
---|---|
xpiundi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexcom 2630 | . . . 4 | |
2 | eliun 3870 | . . . . . . . 8 | |
3 | 2 | anbi1i 454 | . . . . . . 7 |
4 | 3 | exbii 1593 | . . . . . 6 |
5 | df-rex 2450 | . . . . . 6 | |
6 | df-rex 2450 | . . . . . . . 8 | |
7 | 6 | rexbii 2473 | . . . . . . 7 |
8 | rexcom4 2749 | . . . . . . 7 | |
9 | r19.41v 2622 | . . . . . . . 8 | |
10 | 9 | exbii 1593 | . . . . . . 7 |
11 | 7, 8, 10 | 3bitri 205 | . . . . . 6 |
12 | 4, 5, 11 | 3bitr4i 211 | . . . . 5 |
13 | 12 | rexbii 2473 | . . . 4 |
14 | elxp2 4622 | . . . . 5 | |
15 | 14 | rexbii 2473 | . . . 4 |
16 | 1, 13, 15 | 3bitr4i 211 | . . 3 |
17 | elxp2 4622 | . . 3 | |
18 | eliun 3870 | . . 3 | |
19 | 16, 17, 18 | 3bitr4i 211 | . 2 |
20 | 19 | eqriv 2162 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wceq 1343 wex 1480 wcel 2136 wrex 2445 cop 3579 ciun 3866 cxp 4602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-iun 3868 df-opab 4044 df-xp 4610 |
This theorem is referenced by: xpexgALT 6101 txbasval 12917 |
Copyright terms: Public domain | W3C validator |