Step | Hyp | Ref
| Expression |
1 | | simpl 108 |
. . . 4
⊢
((CHOICE ∧ 𝑦 ⊆ {∅}) →
CHOICE) |
2 | | exmidaclem.c |
. . . . . 6
⊢ 𝐶 = {𝐴, 𝐵} |
3 | | exmidaclem.a |
. . . . . . . 8
⊢ 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝑦 = {∅})} |
4 | | pp0ex 4168 |
. . . . . . . . 9
⊢ {∅,
{∅}} ∈ V |
5 | 4 | rabex 4126 |
. . . . . . . 8
⊢ {𝑥 ∈ {∅, {∅}}
∣ (𝑥 = ∅ ∨
𝑦 = {∅})} ∈
V |
6 | 3, 5 | eqeltri 2239 |
. . . . . . 7
⊢ 𝐴 ∈ V |
7 | | exmidaclem.b |
. . . . . . . 8
⊢ 𝐵 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝑦 = {∅})} |
8 | 4 | rabex 4126 |
. . . . . . . 8
⊢ {𝑥 ∈ {∅, {∅}}
∣ (𝑥 = {∅} ∨
𝑦 = {∅})} ∈
V |
9 | 7, 8 | eqeltri 2239 |
. . . . . . 7
⊢ 𝐵 ∈ V |
10 | | prexg 4189 |
. . . . . . 7
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴, 𝐵} ∈ V) |
11 | 6, 9, 10 | mp2an 423 |
. . . . . 6
⊢ {𝐴, 𝐵} ∈ V |
12 | 2, 11 | eqeltri 2239 |
. . . . 5
⊢ 𝐶 ∈ V |
13 | 12 | a1i 9 |
. . . 4
⊢
((CHOICE ∧ 𝑦 ⊆ {∅}) → 𝐶 ∈ V) |
14 | | simpr 109 |
. . . . . . 7
⊢
(((CHOICE ∧ 𝑦 ⊆ {∅}) ∧ 𝑧 ∈ 𝐶) → 𝑧 ∈ 𝐶) |
15 | 14, 2 | eleqtrdi 2259 |
. . . . . 6
⊢
(((CHOICE ∧ 𝑦 ⊆ {∅}) ∧ 𝑧 ∈ 𝐶) → 𝑧 ∈ {𝐴, 𝐵}) |
16 | | elpri 3599 |
. . . . . 6
⊢ (𝑧 ∈ {𝐴, 𝐵} → (𝑧 = 𝐴 ∨ 𝑧 = 𝐵)) |
17 | | 0ex 4109 |
. . . . . . . . . . 11
⊢ ∅
∈ V |
18 | 17 | prid1 3682 |
. . . . . . . . . 10
⊢ ∅
∈ {∅, {∅}} |
19 | | eqid 2165 |
. . . . . . . . . . 11
⊢ ∅ =
∅ |
20 | 19 | orci 721 |
. . . . . . . . . 10
⊢ (∅
= ∅ ∨ 𝑦 =
{∅}) |
21 | | eqeq1 2172 |
. . . . . . . . . . . 12
⊢ (𝑥 = ∅ → (𝑥 = ∅ ↔ ∅ =
∅)) |
22 | 21 | orbi1d 781 |
. . . . . . . . . . 11
⊢ (𝑥 = ∅ → ((𝑥 = ∅ ∨ 𝑦 = {∅}) ↔ (∅ =
∅ ∨ 𝑦 =
{∅}))) |
23 | 22, 3 | elrab2 2885 |
. . . . . . . . . 10
⊢ (∅
∈ 𝐴 ↔ (∅
∈ {∅, {∅}} ∧ (∅ = ∅ ∨ 𝑦 = {∅}))) |
24 | 18, 20, 23 | mpbir2an 932 |
. . . . . . . . 9
⊢ ∅
∈ 𝐴 |
25 | | eleq2 2230 |
. . . . . . . . 9
⊢ (𝑧 = 𝐴 → (∅ ∈ 𝑧 ↔ ∅ ∈ 𝐴)) |
26 | 24, 25 | mpbiri 167 |
. . . . . . . 8
⊢ (𝑧 = 𝐴 → ∅ ∈ 𝑧) |
27 | | elex2 2742 |
. . . . . . . 8
⊢ (∅
∈ 𝑧 →
∃𝑤 𝑤 ∈ 𝑧) |
28 | 26, 27 | syl 14 |
. . . . . . 7
⊢ (𝑧 = 𝐴 → ∃𝑤 𝑤 ∈ 𝑧) |
29 | | p0ex 4167 |
. . . . . . . . . . 11
⊢ {∅}
∈ V |
30 | 29 | prid2 3683 |
. . . . . . . . . 10
⊢ {∅}
∈ {∅, {∅}} |
31 | | eqid 2165 |
. . . . . . . . . . 11
⊢ {∅}
= {∅} |
32 | 31 | orci 721 |
. . . . . . . . . 10
⊢
({∅} = {∅} ∨ 𝑦 = {∅}) |
33 | | eqeq1 2172 |
. . . . . . . . . . . 12
⊢ (𝑥 = {∅} → (𝑥 = {∅} ↔ {∅} =
{∅})) |
34 | 33 | orbi1d 781 |
. . . . . . . . . . 11
⊢ (𝑥 = {∅} → ((𝑥 = {∅} ∨ 𝑦 = {∅}) ↔ ({∅}
= {∅} ∨ 𝑦 =
{∅}))) |
35 | 34, 7 | elrab2 2885 |
. . . . . . . . . 10
⊢
({∅} ∈ 𝐵
↔ ({∅} ∈ {∅, {∅}} ∧ ({∅} = {∅} ∨
𝑦 =
{∅}))) |
36 | 30, 32, 35 | mpbir2an 932 |
. . . . . . . . 9
⊢ {∅}
∈ 𝐵 |
37 | | eleq2 2230 |
. . . . . . . . 9
⊢ (𝑧 = 𝐵 → ({∅} ∈ 𝑧 ↔ {∅} ∈ 𝐵)) |
38 | 36, 37 | mpbiri 167 |
. . . . . . . 8
⊢ (𝑧 = 𝐵 → {∅} ∈ 𝑧) |
39 | | elex2 2742 |
. . . . . . . 8
⊢
({∅} ∈ 𝑧
→ ∃𝑤 𝑤 ∈ 𝑧) |
40 | 38, 39 | syl 14 |
. . . . . . 7
⊢ (𝑧 = 𝐵 → ∃𝑤 𝑤 ∈ 𝑧) |
41 | 28, 40 | jaoi 706 |
. . . . . 6
⊢ ((𝑧 = 𝐴 ∨ 𝑧 = 𝐵) → ∃𝑤 𝑤 ∈ 𝑧) |
42 | 15, 16, 41 | 3syl 17 |
. . . . 5
⊢
(((CHOICE ∧ 𝑦 ⊆ {∅}) ∧ 𝑧 ∈ 𝐶) → ∃𝑤 𝑤 ∈ 𝑧) |
43 | 42 | ralrimiva 2539 |
. . . 4
⊢
((CHOICE ∧ 𝑦 ⊆ {∅}) → ∀𝑧 ∈ 𝐶 ∃𝑤 𝑤 ∈ 𝑧) |
44 | 1, 13, 43 | acfun 7163 |
. . 3
⊢
((CHOICE ∧ 𝑦 ⊆ {∅}) → ∃𝑓(𝑓 Fn 𝐶 ∧ ∀𝑧 ∈ 𝐶 (𝑓‘𝑧) ∈ 𝑧)) |
45 | | 0nep0 4144 |
. . . . . . . . . 10
⊢ ∅
≠ {∅} |
46 | 45 | neii 2338 |
. . . . . . . . 9
⊢ ¬
∅ = {∅} |
47 | | simplr 520 |
. . . . . . . . . 10
⊢
(((((CHOICE ∧ 𝑦 ⊆ {∅}) ∧ (𝑓 Fn 𝐶 ∧ ∀𝑧 ∈ 𝐶 (𝑓‘𝑧) ∈ 𝑧)) ∧ (𝑓‘𝐴) = ∅) ∧ (𝑓‘𝐵) = {∅}) → (𝑓‘𝐴) = ∅) |
48 | | simpr 109 |
. . . . . . . . . 10
⊢
(((((CHOICE ∧ 𝑦 ⊆ {∅}) ∧ (𝑓 Fn 𝐶 ∧ ∀𝑧 ∈ 𝐶 (𝑓‘𝑧) ∈ 𝑧)) ∧ (𝑓‘𝐴) = ∅) ∧ (𝑓‘𝐵) = {∅}) → (𝑓‘𝐵) = {∅}) |
49 | 47, 48 | eqeq12d 2180 |
. . . . . . . . 9
⊢
(((((CHOICE ∧ 𝑦 ⊆ {∅}) ∧ (𝑓 Fn 𝐶 ∧ ∀𝑧 ∈ 𝐶 (𝑓‘𝑧) ∈ 𝑧)) ∧ (𝑓‘𝐴) = ∅) ∧ (𝑓‘𝐵) = {∅}) → ((𝑓‘𝐴) = (𝑓‘𝐵) ↔ ∅ =
{∅})) |
50 | 46, 49 | mtbiri 665 |
. . . . . . . 8
⊢
(((((CHOICE ∧ 𝑦 ⊆ {∅}) ∧ (𝑓 Fn 𝐶 ∧ ∀𝑧 ∈ 𝐶 (𝑓‘𝑧) ∈ 𝑧)) ∧ (𝑓‘𝐴) = ∅) ∧ (𝑓‘𝐵) = {∅}) → ¬ (𝑓‘𝐴) = (𝑓‘𝐵)) |
51 | | olc 701 |
. . . . . . . . . . . . 13
⊢ (𝑦 = {∅} → (𝑥 = ∅ ∨ 𝑦 = {∅})) |
52 | 51 | ralrimivw 2540 |
. . . . . . . . . . . 12
⊢ (𝑦 = {∅} →
∀𝑥 ∈ {∅,
{∅}} (𝑥 = ∅
∨ 𝑦 =
{∅})) |
53 | | rabid2 2642 |
. . . . . . . . . . . 12
⊢
({∅, {∅}} = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝑦 = {∅})} ↔
∀𝑥 ∈ {∅,
{∅}} (𝑥 = ∅
∨ 𝑦 =
{∅})) |
54 | 52, 53 | sylibr 133 |
. . . . . . . . . . 11
⊢ (𝑦 = {∅} → {∅,
{∅}} = {𝑥 ∈
{∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝑦 = {∅})}) |
55 | 54, 3 | eqtr4di 2217 |
. . . . . . . . . 10
⊢ (𝑦 = {∅} → {∅,
{∅}} = 𝐴) |
56 | | olc 701 |
. . . . . . . . . . . . 13
⊢ (𝑦 = {∅} → (𝑥 = {∅} ∨ 𝑦 = {∅})) |
57 | 56 | ralrimivw 2540 |
. . . . . . . . . . . 12
⊢ (𝑦 = {∅} →
∀𝑥 ∈ {∅,
{∅}} (𝑥 = {∅}
∨ 𝑦 =
{∅})) |
58 | | rabid2 2642 |
. . . . . . . . . . . 12
⊢
({∅, {∅}} = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝑦 = {∅})} ↔
∀𝑥 ∈ {∅,
{∅}} (𝑥 = {∅}
∨ 𝑦 =
{∅})) |
59 | 57, 58 | sylibr 133 |
. . . . . . . . . . 11
⊢ (𝑦 = {∅} → {∅,
{∅}} = {𝑥 ∈
{∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝑦 = {∅})}) |
60 | 59, 7 | eqtr4di 2217 |
. . . . . . . . . 10
⊢ (𝑦 = {∅} → {∅,
{∅}} = 𝐵) |
61 | 55, 60 | eqtr3d 2200 |
. . . . . . . . 9
⊢ (𝑦 = {∅} → 𝐴 = 𝐵) |
62 | 61 | fveq2d 5490 |
. . . . . . . 8
⊢ (𝑦 = {∅} → (𝑓‘𝐴) = (𝑓‘𝐵)) |
63 | 50, 62 | nsyl 618 |
. . . . . . 7
⊢
(((((CHOICE ∧ 𝑦 ⊆ {∅}) ∧ (𝑓 Fn 𝐶 ∧ ∀𝑧 ∈ 𝐶 (𝑓‘𝑧) ∈ 𝑧)) ∧ (𝑓‘𝐴) = ∅) ∧ (𝑓‘𝐵) = {∅}) → ¬ 𝑦 = {∅}) |
64 | 63 | olcd 724 |
. . . . . 6
⊢
(((((CHOICE ∧ 𝑦 ⊆ {∅}) ∧ (𝑓 Fn 𝐶 ∧ ∀𝑧 ∈ 𝐶 (𝑓‘𝑧) ∈ 𝑧)) ∧ (𝑓‘𝐴) = ∅) ∧ (𝑓‘𝐵) = {∅}) → (𝑦 = {∅} ∨ ¬ 𝑦 = {∅})) |
65 | | simpr 109 |
. . . . . . 7
⊢
(((((CHOICE ∧ 𝑦 ⊆ {∅}) ∧ (𝑓 Fn 𝐶 ∧ ∀𝑧 ∈ 𝐶 (𝑓‘𝑧) ∈ 𝑧)) ∧ (𝑓‘𝐴) = ∅) ∧ 𝑦 = {∅}) → 𝑦 = {∅}) |
66 | 65 | orcd 723 |
. . . . . 6
⊢
(((((CHOICE ∧ 𝑦 ⊆ {∅}) ∧ (𝑓 Fn 𝐶 ∧ ∀𝑧 ∈ 𝐶 (𝑓‘𝑧) ∈ 𝑧)) ∧ (𝑓‘𝐴) = ∅) ∧ 𝑦 = {∅}) → (𝑦 = {∅} ∨ ¬ 𝑦 = {∅})) |
67 | | fveq2 5486 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝐵 → (𝑓‘𝑧) = (𝑓‘𝐵)) |
68 | | id 19 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝐵 → 𝑧 = 𝐵) |
69 | 67, 68 | eleq12d 2237 |
. . . . . . . . . 10
⊢ (𝑧 = 𝐵 → ((𝑓‘𝑧) ∈ 𝑧 ↔ (𝑓‘𝐵) ∈ 𝐵)) |
70 | | simprr 522 |
. . . . . . . . . 10
⊢
(((CHOICE ∧ 𝑦 ⊆ {∅}) ∧ (𝑓 Fn 𝐶 ∧ ∀𝑧 ∈ 𝐶 (𝑓‘𝑧) ∈ 𝑧)) → ∀𝑧 ∈ 𝐶 (𝑓‘𝑧) ∈ 𝑧) |
71 | 9 | prid2 3683 |
. . . . . . . . . . . 12
⊢ 𝐵 ∈ {𝐴, 𝐵} |
72 | 71, 2 | eleqtrri 2242 |
. . . . . . . . . . 11
⊢ 𝐵 ∈ 𝐶 |
73 | 72 | a1i 9 |
. . . . . . . . . 10
⊢
(((CHOICE ∧ 𝑦 ⊆ {∅}) ∧ (𝑓 Fn 𝐶 ∧ ∀𝑧 ∈ 𝐶 (𝑓‘𝑧) ∈ 𝑧)) → 𝐵 ∈ 𝐶) |
74 | 69, 70, 73 | rspcdva 2835 |
. . . . . . . . 9
⊢
(((CHOICE ∧ 𝑦 ⊆ {∅}) ∧ (𝑓 Fn 𝐶 ∧ ∀𝑧 ∈ 𝐶 (𝑓‘𝑧) ∈ 𝑧)) → (𝑓‘𝐵) ∈ 𝐵) |
75 | | eqeq1 2172 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑓‘𝐵) → (𝑥 = {∅} ↔ (𝑓‘𝐵) = {∅})) |
76 | 75 | orbi1d 781 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑓‘𝐵) → ((𝑥 = {∅} ∨ 𝑦 = {∅}) ↔ ((𝑓‘𝐵) = {∅} ∨ 𝑦 = {∅}))) |
77 | 76, 7 | elrab2 2885 |
. . . . . . . . 9
⊢ ((𝑓‘𝐵) ∈ 𝐵 ↔ ((𝑓‘𝐵) ∈ {∅, {∅}} ∧ ((𝑓‘𝐵) = {∅} ∨ 𝑦 = {∅}))) |
78 | 74, 77 | sylib 121 |
. . . . . . . 8
⊢
(((CHOICE ∧ 𝑦 ⊆ {∅}) ∧ (𝑓 Fn 𝐶 ∧ ∀𝑧 ∈ 𝐶 (𝑓‘𝑧) ∈ 𝑧)) → ((𝑓‘𝐵) ∈ {∅, {∅}} ∧ ((𝑓‘𝐵) = {∅} ∨ 𝑦 = {∅}))) |
79 | 78 | simprd 113 |
. . . . . . 7
⊢
(((CHOICE ∧ 𝑦 ⊆ {∅}) ∧ (𝑓 Fn 𝐶 ∧ ∀𝑧 ∈ 𝐶 (𝑓‘𝑧) ∈ 𝑧)) → ((𝑓‘𝐵) = {∅} ∨ 𝑦 = {∅})) |
80 | 79 | adantr 274 |
. . . . . 6
⊢
((((CHOICE ∧ 𝑦 ⊆ {∅}) ∧ (𝑓 Fn 𝐶 ∧ ∀𝑧 ∈ 𝐶 (𝑓‘𝑧) ∈ 𝑧)) ∧ (𝑓‘𝐴) = ∅) → ((𝑓‘𝐵) = {∅} ∨ 𝑦 = {∅})) |
81 | 64, 66, 80 | mpjaodan 788 |
. . . . 5
⊢
((((CHOICE ∧ 𝑦 ⊆ {∅}) ∧ (𝑓 Fn 𝐶 ∧ ∀𝑧 ∈ 𝐶 (𝑓‘𝑧) ∈ 𝑧)) ∧ (𝑓‘𝐴) = ∅) → (𝑦 = {∅} ∨ ¬ 𝑦 = {∅})) |
82 | | df-dc 825 |
. . . . 5
⊢
(DECID 𝑦 = {∅} ↔ (𝑦 = {∅} ∨ ¬ 𝑦 = {∅})) |
83 | 81, 82 | sylibr 133 |
. . . 4
⊢
((((CHOICE ∧ 𝑦 ⊆ {∅}) ∧ (𝑓 Fn 𝐶 ∧ ∀𝑧 ∈ 𝐶 (𝑓‘𝑧) ∈ 𝑧)) ∧ (𝑓‘𝐴) = ∅) → DECID
𝑦 =
{∅}) |
84 | | simpr 109 |
. . . . . 6
⊢
((((CHOICE ∧ 𝑦 ⊆ {∅}) ∧ (𝑓 Fn 𝐶 ∧ ∀𝑧 ∈ 𝐶 (𝑓‘𝑧) ∈ 𝑧)) ∧ 𝑦 = {∅}) → 𝑦 = {∅}) |
85 | 84 | orcd 723 |
. . . . 5
⊢
((((CHOICE ∧ 𝑦 ⊆ {∅}) ∧ (𝑓 Fn 𝐶 ∧ ∀𝑧 ∈ 𝐶 (𝑓‘𝑧) ∈ 𝑧)) ∧ 𝑦 = {∅}) → (𝑦 = {∅} ∨ ¬ 𝑦 = {∅})) |
86 | 85, 82 | sylibr 133 |
. . . 4
⊢
((((CHOICE ∧ 𝑦 ⊆ {∅}) ∧ (𝑓 Fn 𝐶 ∧ ∀𝑧 ∈ 𝐶 (𝑓‘𝑧) ∈ 𝑧)) ∧ 𝑦 = {∅}) → DECID
𝑦 =
{∅}) |
87 | | fveq2 5486 |
. . . . . . . 8
⊢ (𝑧 = 𝐴 → (𝑓‘𝑧) = (𝑓‘𝐴)) |
88 | | id 19 |
. . . . . . . 8
⊢ (𝑧 = 𝐴 → 𝑧 = 𝐴) |
89 | 87, 88 | eleq12d 2237 |
. . . . . . 7
⊢ (𝑧 = 𝐴 → ((𝑓‘𝑧) ∈ 𝑧 ↔ (𝑓‘𝐴) ∈ 𝐴)) |
90 | 6 | prid1 3682 |
. . . . . . . . 9
⊢ 𝐴 ∈ {𝐴, 𝐵} |
91 | 90, 2 | eleqtrri 2242 |
. . . . . . . 8
⊢ 𝐴 ∈ 𝐶 |
92 | 91 | a1i 9 |
. . . . . . 7
⊢
(((CHOICE ∧ 𝑦 ⊆ {∅}) ∧ (𝑓 Fn 𝐶 ∧ ∀𝑧 ∈ 𝐶 (𝑓‘𝑧) ∈ 𝑧)) → 𝐴 ∈ 𝐶) |
93 | 89, 70, 92 | rspcdva 2835 |
. . . . . 6
⊢
(((CHOICE ∧ 𝑦 ⊆ {∅}) ∧ (𝑓 Fn 𝐶 ∧ ∀𝑧 ∈ 𝐶 (𝑓‘𝑧) ∈ 𝑧)) → (𝑓‘𝐴) ∈ 𝐴) |
94 | | eqeq1 2172 |
. . . . . . . 8
⊢ (𝑥 = (𝑓‘𝐴) → (𝑥 = ∅ ↔ (𝑓‘𝐴) = ∅)) |
95 | 94 | orbi1d 781 |
. . . . . . 7
⊢ (𝑥 = (𝑓‘𝐴) → ((𝑥 = ∅ ∨ 𝑦 = {∅}) ↔ ((𝑓‘𝐴) = ∅ ∨ 𝑦 = {∅}))) |
96 | 95, 3 | elrab2 2885 |
. . . . . 6
⊢ ((𝑓‘𝐴) ∈ 𝐴 ↔ ((𝑓‘𝐴) ∈ {∅, {∅}} ∧ ((𝑓‘𝐴) = ∅ ∨ 𝑦 = {∅}))) |
97 | 93, 96 | sylib 121 |
. . . . 5
⊢
(((CHOICE ∧ 𝑦 ⊆ {∅}) ∧ (𝑓 Fn 𝐶 ∧ ∀𝑧 ∈ 𝐶 (𝑓‘𝑧) ∈ 𝑧)) → ((𝑓‘𝐴) ∈ {∅, {∅}} ∧ ((𝑓‘𝐴) = ∅ ∨ 𝑦 = {∅}))) |
98 | 97 | simprd 113 |
. . . 4
⊢
(((CHOICE ∧ 𝑦 ⊆ {∅}) ∧ (𝑓 Fn 𝐶 ∧ ∀𝑧 ∈ 𝐶 (𝑓‘𝑧) ∈ 𝑧)) → ((𝑓‘𝐴) = ∅ ∨ 𝑦 = {∅})) |
99 | 83, 86, 98 | mpjaodan 788 |
. . 3
⊢
(((CHOICE ∧ 𝑦 ⊆ {∅}) ∧ (𝑓 Fn 𝐶 ∧ ∀𝑧 ∈ 𝐶 (𝑓‘𝑧) ∈ 𝑧)) → DECID 𝑦 = {∅}) |
100 | 44, 99 | exlimddv 1886 |
. 2
⊢
((CHOICE ∧ 𝑦 ⊆ {∅}) →
DECID 𝑦 =
{∅}) |
101 | 100 | exmid1dc 4179 |
1
⊢
(CHOICE → EXMID) |