ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidaclem GIF version

Theorem exmidaclem 7185
Description: Lemma for exmidac 7186. The result, with a few hypotheses to break out commonly used expressions. (Contributed by Jim Kingdon, 21-Nov-2023.)
Hypotheses
Ref Expression
exmidaclem.a 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝑦 = {∅})}
exmidaclem.b 𝐵 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝑦 = {∅})}
exmidaclem.c 𝐶 = {𝐴, 𝐵}
Assertion
Ref Expression
exmidaclem (CHOICEEXMID)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑦)   𝐶(𝑥,𝑦)

Proof of Theorem exmidaclem
Dummy variables 𝑧 𝑓 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 108 . . . 4 ((CHOICE𝑦 ⊆ {∅}) → CHOICE)
2 exmidaclem.c . . . . . 6 𝐶 = {𝐴, 𝐵}
3 exmidaclem.a . . . . . . . 8 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝑦 = {∅})}
4 pp0ex 4175 . . . . . . . . 9 {∅, {∅}} ∈ V
54rabex 4133 . . . . . . . 8 {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝑦 = {∅})} ∈ V
63, 5eqeltri 2243 . . . . . . 7 𝐴 ∈ V
7 exmidaclem.b . . . . . . . 8 𝐵 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝑦 = {∅})}
84rabex 4133 . . . . . . . 8 {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝑦 = {∅})} ∈ V
97, 8eqeltri 2243 . . . . . . 7 𝐵 ∈ V
10 prexg 4196 . . . . . . 7 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴, 𝐵} ∈ V)
116, 9, 10mp2an 424 . . . . . 6 {𝐴, 𝐵} ∈ V
122, 11eqeltri 2243 . . . . 5 𝐶 ∈ V
1312a1i 9 . . . 4 ((CHOICE𝑦 ⊆ {∅}) → 𝐶 ∈ V)
14 simpr 109 . . . . . . 7 (((CHOICE𝑦 ⊆ {∅}) ∧ 𝑧𝐶) → 𝑧𝐶)
1514, 2eleqtrdi 2263 . . . . . 6 (((CHOICE𝑦 ⊆ {∅}) ∧ 𝑧𝐶) → 𝑧 ∈ {𝐴, 𝐵})
16 elpri 3606 . . . . . 6 (𝑧 ∈ {𝐴, 𝐵} → (𝑧 = 𝐴𝑧 = 𝐵))
17 0ex 4116 . . . . . . . . . . 11 ∅ ∈ V
1817prid1 3689 . . . . . . . . . 10 ∅ ∈ {∅, {∅}}
19 eqid 2170 . . . . . . . . . . 11 ∅ = ∅
2019orci 726 . . . . . . . . . 10 (∅ = ∅ ∨ 𝑦 = {∅})
21 eqeq1 2177 . . . . . . . . . . . 12 (𝑥 = ∅ → (𝑥 = ∅ ↔ ∅ = ∅))
2221orbi1d 786 . . . . . . . . . . 11 (𝑥 = ∅ → ((𝑥 = ∅ ∨ 𝑦 = {∅}) ↔ (∅ = ∅ ∨ 𝑦 = {∅})))
2322, 3elrab2 2889 . . . . . . . . . 10 (∅ ∈ 𝐴 ↔ (∅ ∈ {∅, {∅}} ∧ (∅ = ∅ ∨ 𝑦 = {∅})))
2418, 20, 23mpbir2an 937 . . . . . . . . 9 ∅ ∈ 𝐴
25 eleq2 2234 . . . . . . . . 9 (𝑧 = 𝐴 → (∅ ∈ 𝑧 ↔ ∅ ∈ 𝐴))
2624, 25mpbiri 167 . . . . . . . 8 (𝑧 = 𝐴 → ∅ ∈ 𝑧)
27 elex2 2746 . . . . . . . 8 (∅ ∈ 𝑧 → ∃𝑤 𝑤𝑧)
2826, 27syl 14 . . . . . . 7 (𝑧 = 𝐴 → ∃𝑤 𝑤𝑧)
29 p0ex 4174 . . . . . . . . . . 11 {∅} ∈ V
3029prid2 3690 . . . . . . . . . 10 {∅} ∈ {∅, {∅}}
31 eqid 2170 . . . . . . . . . . 11 {∅} = {∅}
3231orci 726 . . . . . . . . . 10 ({∅} = {∅} ∨ 𝑦 = {∅})
33 eqeq1 2177 . . . . . . . . . . . 12 (𝑥 = {∅} → (𝑥 = {∅} ↔ {∅} = {∅}))
3433orbi1d 786 . . . . . . . . . . 11 (𝑥 = {∅} → ((𝑥 = {∅} ∨ 𝑦 = {∅}) ↔ ({∅} = {∅} ∨ 𝑦 = {∅})))
3534, 7elrab2 2889 . . . . . . . . . 10 ({∅} ∈ 𝐵 ↔ ({∅} ∈ {∅, {∅}} ∧ ({∅} = {∅} ∨ 𝑦 = {∅})))
3630, 32, 35mpbir2an 937 . . . . . . . . 9 {∅} ∈ 𝐵
37 eleq2 2234 . . . . . . . . 9 (𝑧 = 𝐵 → ({∅} ∈ 𝑧 ↔ {∅} ∈ 𝐵))
3836, 37mpbiri 167 . . . . . . . 8 (𝑧 = 𝐵 → {∅} ∈ 𝑧)
39 elex2 2746 . . . . . . . 8 ({∅} ∈ 𝑧 → ∃𝑤 𝑤𝑧)
4038, 39syl 14 . . . . . . 7 (𝑧 = 𝐵 → ∃𝑤 𝑤𝑧)
4128, 40jaoi 711 . . . . . 6 ((𝑧 = 𝐴𝑧 = 𝐵) → ∃𝑤 𝑤𝑧)
4215, 16, 413syl 17 . . . . 5 (((CHOICE𝑦 ⊆ {∅}) ∧ 𝑧𝐶) → ∃𝑤 𝑤𝑧)
4342ralrimiva 2543 . . . 4 ((CHOICE𝑦 ⊆ {∅}) → ∀𝑧𝐶𝑤 𝑤𝑧)
441, 13, 43acfun 7184 . . 3 ((CHOICE𝑦 ⊆ {∅}) → ∃𝑓(𝑓 Fn 𝐶 ∧ ∀𝑧𝐶 (𝑓𝑧) ∈ 𝑧))
45 0nep0 4151 . . . . . . . . . 10 ∅ ≠ {∅}
4645neii 2342 . . . . . . . . 9 ¬ ∅ = {∅}
47 simplr 525 . . . . . . . . . 10 (((((CHOICE𝑦 ⊆ {∅}) ∧ (𝑓 Fn 𝐶 ∧ ∀𝑧𝐶 (𝑓𝑧) ∈ 𝑧)) ∧ (𝑓𝐴) = ∅) ∧ (𝑓𝐵) = {∅}) → (𝑓𝐴) = ∅)
48 simpr 109 . . . . . . . . . 10 (((((CHOICE𝑦 ⊆ {∅}) ∧ (𝑓 Fn 𝐶 ∧ ∀𝑧𝐶 (𝑓𝑧) ∈ 𝑧)) ∧ (𝑓𝐴) = ∅) ∧ (𝑓𝐵) = {∅}) → (𝑓𝐵) = {∅})
4947, 48eqeq12d 2185 . . . . . . . . 9 (((((CHOICE𝑦 ⊆ {∅}) ∧ (𝑓 Fn 𝐶 ∧ ∀𝑧𝐶 (𝑓𝑧) ∈ 𝑧)) ∧ (𝑓𝐴) = ∅) ∧ (𝑓𝐵) = {∅}) → ((𝑓𝐴) = (𝑓𝐵) ↔ ∅ = {∅}))
5046, 49mtbiri 670 . . . . . . . 8 (((((CHOICE𝑦 ⊆ {∅}) ∧ (𝑓 Fn 𝐶 ∧ ∀𝑧𝐶 (𝑓𝑧) ∈ 𝑧)) ∧ (𝑓𝐴) = ∅) ∧ (𝑓𝐵) = {∅}) → ¬ (𝑓𝐴) = (𝑓𝐵))
51 olc 706 . . . . . . . . . . . . 13 (𝑦 = {∅} → (𝑥 = ∅ ∨ 𝑦 = {∅}))
5251ralrimivw 2544 . . . . . . . . . . . 12 (𝑦 = {∅} → ∀𝑥 ∈ {∅, {∅}} (𝑥 = ∅ ∨ 𝑦 = {∅}))
53 rabid2 2646 . . . . . . . . . . . 12 ({∅, {∅}} = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝑦 = {∅})} ↔ ∀𝑥 ∈ {∅, {∅}} (𝑥 = ∅ ∨ 𝑦 = {∅}))
5452, 53sylibr 133 . . . . . . . . . . 11 (𝑦 = {∅} → {∅, {∅}} = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝑦 = {∅})})
5554, 3eqtr4di 2221 . . . . . . . . . 10 (𝑦 = {∅} → {∅, {∅}} = 𝐴)
56 olc 706 . . . . . . . . . . . . 13 (𝑦 = {∅} → (𝑥 = {∅} ∨ 𝑦 = {∅}))
5756ralrimivw 2544 . . . . . . . . . . . 12 (𝑦 = {∅} → ∀𝑥 ∈ {∅, {∅}} (𝑥 = {∅} ∨ 𝑦 = {∅}))
58 rabid2 2646 . . . . . . . . . . . 12 ({∅, {∅}} = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝑦 = {∅})} ↔ ∀𝑥 ∈ {∅, {∅}} (𝑥 = {∅} ∨ 𝑦 = {∅}))
5957, 58sylibr 133 . . . . . . . . . . 11 (𝑦 = {∅} → {∅, {∅}} = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝑦 = {∅})})
6059, 7eqtr4di 2221 . . . . . . . . . 10 (𝑦 = {∅} → {∅, {∅}} = 𝐵)
6155, 60eqtr3d 2205 . . . . . . . . 9 (𝑦 = {∅} → 𝐴 = 𝐵)
6261fveq2d 5500 . . . . . . . 8 (𝑦 = {∅} → (𝑓𝐴) = (𝑓𝐵))
6350, 62nsyl 623 . . . . . . 7 (((((CHOICE𝑦 ⊆ {∅}) ∧ (𝑓 Fn 𝐶 ∧ ∀𝑧𝐶 (𝑓𝑧) ∈ 𝑧)) ∧ (𝑓𝐴) = ∅) ∧ (𝑓𝐵) = {∅}) → ¬ 𝑦 = {∅})
6463olcd 729 . . . . . 6 (((((CHOICE𝑦 ⊆ {∅}) ∧ (𝑓 Fn 𝐶 ∧ ∀𝑧𝐶 (𝑓𝑧) ∈ 𝑧)) ∧ (𝑓𝐴) = ∅) ∧ (𝑓𝐵) = {∅}) → (𝑦 = {∅} ∨ ¬ 𝑦 = {∅}))
65 simpr 109 . . . . . . 7 (((((CHOICE𝑦 ⊆ {∅}) ∧ (𝑓 Fn 𝐶 ∧ ∀𝑧𝐶 (𝑓𝑧) ∈ 𝑧)) ∧ (𝑓𝐴) = ∅) ∧ 𝑦 = {∅}) → 𝑦 = {∅})
6665orcd 728 . . . . . 6 (((((CHOICE𝑦 ⊆ {∅}) ∧ (𝑓 Fn 𝐶 ∧ ∀𝑧𝐶 (𝑓𝑧) ∈ 𝑧)) ∧ (𝑓𝐴) = ∅) ∧ 𝑦 = {∅}) → (𝑦 = {∅} ∨ ¬ 𝑦 = {∅}))
67 fveq2 5496 . . . . . . . . . . 11 (𝑧 = 𝐵 → (𝑓𝑧) = (𝑓𝐵))
68 id 19 . . . . . . . . . . 11 (𝑧 = 𝐵𝑧 = 𝐵)
6967, 68eleq12d 2241 . . . . . . . . . 10 (𝑧 = 𝐵 → ((𝑓𝑧) ∈ 𝑧 ↔ (𝑓𝐵) ∈ 𝐵))
70 simprr 527 . . . . . . . . . 10 (((CHOICE𝑦 ⊆ {∅}) ∧ (𝑓 Fn 𝐶 ∧ ∀𝑧𝐶 (𝑓𝑧) ∈ 𝑧)) → ∀𝑧𝐶 (𝑓𝑧) ∈ 𝑧)
719prid2 3690 . . . . . . . . . . . 12 𝐵 ∈ {𝐴, 𝐵}
7271, 2eleqtrri 2246 . . . . . . . . . . 11 𝐵𝐶
7372a1i 9 . . . . . . . . . 10 (((CHOICE𝑦 ⊆ {∅}) ∧ (𝑓 Fn 𝐶 ∧ ∀𝑧𝐶 (𝑓𝑧) ∈ 𝑧)) → 𝐵𝐶)
7469, 70, 73rspcdva 2839 . . . . . . . . 9 (((CHOICE𝑦 ⊆ {∅}) ∧ (𝑓 Fn 𝐶 ∧ ∀𝑧𝐶 (𝑓𝑧) ∈ 𝑧)) → (𝑓𝐵) ∈ 𝐵)
75 eqeq1 2177 . . . . . . . . . . 11 (𝑥 = (𝑓𝐵) → (𝑥 = {∅} ↔ (𝑓𝐵) = {∅}))
7675orbi1d 786 . . . . . . . . . 10 (𝑥 = (𝑓𝐵) → ((𝑥 = {∅} ∨ 𝑦 = {∅}) ↔ ((𝑓𝐵) = {∅} ∨ 𝑦 = {∅})))
7776, 7elrab2 2889 . . . . . . . . 9 ((𝑓𝐵) ∈ 𝐵 ↔ ((𝑓𝐵) ∈ {∅, {∅}} ∧ ((𝑓𝐵) = {∅} ∨ 𝑦 = {∅})))
7874, 77sylib 121 . . . . . . . 8 (((CHOICE𝑦 ⊆ {∅}) ∧ (𝑓 Fn 𝐶 ∧ ∀𝑧𝐶 (𝑓𝑧) ∈ 𝑧)) → ((𝑓𝐵) ∈ {∅, {∅}} ∧ ((𝑓𝐵) = {∅} ∨ 𝑦 = {∅})))
7978simprd 113 . . . . . . 7 (((CHOICE𝑦 ⊆ {∅}) ∧ (𝑓 Fn 𝐶 ∧ ∀𝑧𝐶 (𝑓𝑧) ∈ 𝑧)) → ((𝑓𝐵) = {∅} ∨ 𝑦 = {∅}))
8079adantr 274 . . . . . 6 ((((CHOICE𝑦 ⊆ {∅}) ∧ (𝑓 Fn 𝐶 ∧ ∀𝑧𝐶 (𝑓𝑧) ∈ 𝑧)) ∧ (𝑓𝐴) = ∅) → ((𝑓𝐵) = {∅} ∨ 𝑦 = {∅}))
8164, 66, 80mpjaodan 793 . . . . 5 ((((CHOICE𝑦 ⊆ {∅}) ∧ (𝑓 Fn 𝐶 ∧ ∀𝑧𝐶 (𝑓𝑧) ∈ 𝑧)) ∧ (𝑓𝐴) = ∅) → (𝑦 = {∅} ∨ ¬ 𝑦 = {∅}))
82 df-dc 830 . . . . 5 (DECID 𝑦 = {∅} ↔ (𝑦 = {∅} ∨ ¬ 𝑦 = {∅}))
8381, 82sylibr 133 . . . 4 ((((CHOICE𝑦 ⊆ {∅}) ∧ (𝑓 Fn 𝐶 ∧ ∀𝑧𝐶 (𝑓𝑧) ∈ 𝑧)) ∧ (𝑓𝐴) = ∅) → DECID 𝑦 = {∅})
84 simpr 109 . . . . . 6 ((((CHOICE𝑦 ⊆ {∅}) ∧ (𝑓 Fn 𝐶 ∧ ∀𝑧𝐶 (𝑓𝑧) ∈ 𝑧)) ∧ 𝑦 = {∅}) → 𝑦 = {∅})
8584orcd 728 . . . . 5 ((((CHOICE𝑦 ⊆ {∅}) ∧ (𝑓 Fn 𝐶 ∧ ∀𝑧𝐶 (𝑓𝑧) ∈ 𝑧)) ∧ 𝑦 = {∅}) → (𝑦 = {∅} ∨ ¬ 𝑦 = {∅}))
8685, 82sylibr 133 . . . 4 ((((CHOICE𝑦 ⊆ {∅}) ∧ (𝑓 Fn 𝐶 ∧ ∀𝑧𝐶 (𝑓𝑧) ∈ 𝑧)) ∧ 𝑦 = {∅}) → DECID 𝑦 = {∅})
87 fveq2 5496 . . . . . . . 8 (𝑧 = 𝐴 → (𝑓𝑧) = (𝑓𝐴))
88 id 19 . . . . . . . 8 (𝑧 = 𝐴𝑧 = 𝐴)
8987, 88eleq12d 2241 . . . . . . 7 (𝑧 = 𝐴 → ((𝑓𝑧) ∈ 𝑧 ↔ (𝑓𝐴) ∈ 𝐴))
906prid1 3689 . . . . . . . . 9 𝐴 ∈ {𝐴, 𝐵}
9190, 2eleqtrri 2246 . . . . . . . 8 𝐴𝐶
9291a1i 9 . . . . . . 7 (((CHOICE𝑦 ⊆ {∅}) ∧ (𝑓 Fn 𝐶 ∧ ∀𝑧𝐶 (𝑓𝑧) ∈ 𝑧)) → 𝐴𝐶)
9389, 70, 92rspcdva 2839 . . . . . 6 (((CHOICE𝑦 ⊆ {∅}) ∧ (𝑓 Fn 𝐶 ∧ ∀𝑧𝐶 (𝑓𝑧) ∈ 𝑧)) → (𝑓𝐴) ∈ 𝐴)
94 eqeq1 2177 . . . . . . . 8 (𝑥 = (𝑓𝐴) → (𝑥 = ∅ ↔ (𝑓𝐴) = ∅))
9594orbi1d 786 . . . . . . 7 (𝑥 = (𝑓𝐴) → ((𝑥 = ∅ ∨ 𝑦 = {∅}) ↔ ((𝑓𝐴) = ∅ ∨ 𝑦 = {∅})))
9695, 3elrab2 2889 . . . . . 6 ((𝑓𝐴) ∈ 𝐴 ↔ ((𝑓𝐴) ∈ {∅, {∅}} ∧ ((𝑓𝐴) = ∅ ∨ 𝑦 = {∅})))
9793, 96sylib 121 . . . . 5 (((CHOICE𝑦 ⊆ {∅}) ∧ (𝑓 Fn 𝐶 ∧ ∀𝑧𝐶 (𝑓𝑧) ∈ 𝑧)) → ((𝑓𝐴) ∈ {∅, {∅}} ∧ ((𝑓𝐴) = ∅ ∨ 𝑦 = {∅})))
9897simprd 113 . . . 4 (((CHOICE𝑦 ⊆ {∅}) ∧ (𝑓 Fn 𝐶 ∧ ∀𝑧𝐶 (𝑓𝑧) ∈ 𝑧)) → ((𝑓𝐴) = ∅ ∨ 𝑦 = {∅}))
9983, 86, 98mpjaodan 793 . . 3 (((CHOICE𝑦 ⊆ {∅}) ∧ (𝑓 Fn 𝐶 ∧ ∀𝑧𝐶 (𝑓𝑧) ∈ 𝑧)) → DECID 𝑦 = {∅})
10044, 99exlimddv 1891 . 2 ((CHOICE𝑦 ⊆ {∅}) → DECID 𝑦 = {∅})
101100exmid1dc 4186 1 (CHOICEEXMID)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 703  DECID wdc 829   = wceq 1348  wex 1485  wcel 2141  wral 2448  {crab 2452  Vcvv 2730  wss 3121  c0 3414  {csn 3583  {cpr 3584  EXMIDwem 4180   Fn wfn 5193  cfv 5198  CHOICEwac 7182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-exmid 4181  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ac 7183
This theorem is referenced by:  exmidac  7186
  Copyright terms: Public domain W3C validator