| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > necomi | GIF version | ||
| Description: Inference from commutative law for inequality. (Contributed by NM, 17-Oct-2012.) |
| Ref | Expression |
|---|---|
| necomi.1 | ⊢ 𝐴 ≠ 𝐵 |
| Ref | Expression |
|---|---|
| necomi | ⊢ 𝐵 ≠ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necomi.1 | . 2 ⊢ 𝐴 ≠ 𝐵 | |
| 2 | necom 2484 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴) | |
| 3 | 1, 2 | mpbi 145 | 1 ⊢ 𝐵 ≠ 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ≠ wne 2400 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-5 1493 ax-gen 1495 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 df-ne 2401 |
| This theorem is referenced by: 0nep0 4248 xp01disj 6569 xp01disjl 6570 rex2dom 6961 djulclb 7210 djuinr 7218 2oneel 7430 pnfnemnf 8189 mnfnepnf 8190 ltneii 8231 1ne0 9166 0ne2 9304 fzprval 10266 0tonninf 10649 1tonninf 10650 ressplusgd 13148 ressmulrg 13164 fnpr2o 13358 fvpr0o 13360 fvpr1o 13361 mgpress 13880 rmodislmod 14300 sralemg 14387 srascag 14391 sratsetg 14394 sradsg 14397 zlmbasg 14578 zlmplusgg 14579 zlmmulrg 14580 zlmsca 14581 znbas2 14589 znadd 14590 znmul 14591 |
| Copyright terms: Public domain | W3C validator |