| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > necomi | GIF version | ||
| Description: Inference from commutative law for inequality. (Contributed by NM, 17-Oct-2012.) |
| Ref | Expression |
|---|---|
| necomi.1 | ⊢ 𝐴 ≠ 𝐵 |
| Ref | Expression |
|---|---|
| necomi | ⊢ 𝐵 ≠ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necomi.1 | . 2 ⊢ 𝐴 ≠ 𝐵 | |
| 2 | necom 2451 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴) | |
| 3 | 1, 2 | mpbi 145 | 1 ⊢ 𝐵 ≠ 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ≠ wne 2367 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1461 ax-gen 1463 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-ne 2368 |
| This theorem is referenced by: 0nep0 4199 xp01disj 6500 xp01disjl 6501 djulclb 7130 djuinr 7138 2oneel 7341 pnfnemnf 8100 mnfnepnf 8101 ltneii 8142 1ne0 9077 0ne2 9215 fzprval 10176 0tonninf 10551 1tonninf 10552 ressplusgd 12833 ressmulrg 12849 fnpr2o 13043 fvpr0o 13045 fvpr1o 13046 mgpress 13565 rmodislmod 13985 sralemg 14072 srascag 14076 sratsetg 14079 sradsg 14082 zlmbasg 14263 zlmplusgg 14264 zlmmulrg 14265 zlmsca 14266 znbas2 14274 znadd 14275 znmul 14276 |
| Copyright terms: Public domain | W3C validator |