![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > necomi | GIF version |
Description: Inference from commutative law for inequality. (Contributed by NM, 17-Oct-2012.) |
Ref | Expression |
---|---|
necomi.1 | ⊢ 𝐴 ≠ 𝐵 |
Ref | Expression |
---|---|
necomi | ⊢ 𝐵 ≠ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necomi.1 | . 2 ⊢ 𝐴 ≠ 𝐵 | |
2 | necom 2443 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴) | |
3 | 1, 2 | mpbi 145 | 1 ⊢ 𝐵 ≠ 𝐴 |
Colors of variables: wff set class |
Syntax hints: ≠ wne 2359 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1457 ax-gen 1459 ax-ext 2170 |
This theorem depends on definitions: df-bi 117 df-cleq 2181 df-ne 2360 |
This theorem is referenced by: 0nep0 4179 xp01disj 6451 xp01disjl 6452 djulclb 7071 djuinr 7079 2oneel 7272 pnfnemnf 8029 mnfnepnf 8030 ltneii 8071 1ne0 9004 0ne2 9141 fzprval 10099 0tonninf 10456 1tonninf 10457 ressplusgd 12605 ressmulrg 12621 fnpr2o 12780 fvpr0o 12782 fvpr1o 12783 mgpress 13245 rmodislmod 13627 sralemg 13714 srascag 13718 sratsetg 13721 sradsg 13724 zlmbasg 13874 zlmplusgg 13875 zlmmulrg 13876 zlmsca 13877 |
Copyright terms: Public domain | W3C validator |