ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necomi GIF version

Theorem necomi 2425
Description: Inference from commutative law for inequality. (Contributed by NM, 17-Oct-2012.)
Hypothesis
Ref Expression
necomi.1 𝐴𝐵
Assertion
Ref Expression
necomi 𝐵𝐴

Proof of Theorem necomi
StepHypRef Expression
1 necomi.1 . 2 𝐴𝐵
2 necom 2424 . 2 (𝐴𝐵𝐵𝐴)
31, 2mpbi 144 1 𝐵𝐴
Colors of variables: wff set class
Syntax hints:  wne 2340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-5 1440  ax-gen 1442  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-cleq 2163  df-ne 2341
This theorem is referenced by:  0nep0  4151  xp01disj  6412  xp01disjl  6413  djulclb  7032  djuinr  7040  pnfnemnf  7974  mnfnepnf  7975  ltneii  8016  1ne0  8946  0ne2  9083  fzprval  10038  0tonninf  10395  1tonninf  10396
  Copyright terms: Public domain W3C validator