Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > necomi | GIF version |
Description: Inference from commutative law for inequality. (Contributed by NM, 17-Oct-2012.) |
Ref | Expression |
---|---|
necomi.1 | ⊢ 𝐴 ≠ 𝐵 |
Ref | Expression |
---|---|
necomi | ⊢ 𝐵 ≠ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necomi.1 | . 2 ⊢ 𝐴 ≠ 𝐵 | |
2 | necom 2420 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴) | |
3 | 1, 2 | mpbi 144 | 1 ⊢ 𝐵 ≠ 𝐴 |
Colors of variables: wff set class |
Syntax hints: ≠ wne 2336 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-5 1435 ax-gen 1437 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 df-ne 2337 |
This theorem is referenced by: 0nep0 4144 xp01disj 6401 xp01disjl 6402 djulclb 7020 djuinr 7028 pnfnemnf 7953 mnfnepnf 7954 ltneii 7995 1ne0 8925 0ne2 9062 fzprval 10017 0tonninf 10374 1tonninf 10375 |
Copyright terms: Public domain | W3C validator |