| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > necomi | GIF version | ||
| Description: Inference from commutative law for inequality. (Contributed by NM, 17-Oct-2012.) |
| Ref | Expression |
|---|---|
| necomi.1 | ⊢ 𝐴 ≠ 𝐵 |
| Ref | Expression |
|---|---|
| necomi | ⊢ 𝐵 ≠ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necomi.1 | . 2 ⊢ 𝐴 ≠ 𝐵 | |
| 2 | necom 2461 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴) | |
| 3 | 1, 2 | mpbi 145 | 1 ⊢ 𝐵 ≠ 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ≠ wne 2377 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1471 ax-gen 1473 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-cleq 2199 df-ne 2378 |
| This theorem is referenced by: 0nep0 4213 xp01disj 6526 xp01disjl 6527 rex2dom 6917 djulclb 7164 djuinr 7172 2oneel 7375 pnfnemnf 8134 mnfnepnf 8135 ltneii 8176 1ne0 9111 0ne2 9249 fzprval 10211 0tonninf 10592 1tonninf 10593 ressplusgd 13005 ressmulrg 13021 fnpr2o 13215 fvpr0o 13217 fvpr1o 13218 mgpress 13737 rmodislmod 14157 sralemg 14244 srascag 14248 sratsetg 14251 sradsg 14254 zlmbasg 14435 zlmplusgg 14436 zlmmulrg 14437 zlmsca 14438 znbas2 14446 znadd 14447 znmul 14448 |
| Copyright terms: Public domain | W3C validator |