![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > necomi | GIF version |
Description: Inference from commutative law for inequality. (Contributed by NM, 17-Oct-2012.) |
Ref | Expression |
---|---|
necomi.1 | ⊢ 𝐴 ≠ 𝐵 |
Ref | Expression |
---|---|
necomi | ⊢ 𝐵 ≠ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necomi.1 | . 2 ⊢ 𝐴 ≠ 𝐵 | |
2 | necom 2339 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴) | |
3 | 1, 2 | mpbi 143 | 1 ⊢ 𝐵 ≠ 𝐴 |
Colors of variables: wff set class |
Syntax hints: ≠ wne 2255 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-5 1381 ax-gen 1383 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-cleq 2081 df-ne 2256 |
This theorem is referenced by: 0nep0 4000 xp01disj 6198 djulclb 6747 djuinr 6755 djuin 6756 pnfnemnf 7542 mnfnepnf 7543 ltneii 7581 1ne0 8490 0ne2 8621 fzprval 9496 0tonninf 9845 1tonninf 9846 |
Copyright terms: Public domain | W3C validator |