| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > necomi | GIF version | ||
| Description: Inference from commutative law for inequality. (Contributed by NM, 17-Oct-2012.) |
| Ref | Expression |
|---|---|
| necomi.1 | ⊢ 𝐴 ≠ 𝐵 |
| Ref | Expression |
|---|---|
| necomi | ⊢ 𝐵 ≠ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necomi.1 | . 2 ⊢ 𝐴 ≠ 𝐵 | |
| 2 | necom 2484 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴) | |
| 3 | 1, 2 | mpbi 145 | 1 ⊢ 𝐵 ≠ 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ≠ wne 2400 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-5 1493 ax-gen 1495 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 df-ne 2401 |
| This theorem is referenced by: 0nep0 4249 xp01disj 6587 xp01disjl 6588 rex2dom 6979 djulclb 7230 djuinr 7238 2oneel 7450 pnfnemnf 8209 mnfnepnf 8210 ltneii 8251 1ne0 9186 0ne2 9324 fzprval 10286 0tonninf 10670 1tonninf 10671 ressplusgd 13170 ressmulrg 13186 fnpr2o 13380 fvpr0o 13382 fvpr1o 13383 mgpress 13902 rmodislmod 14323 sralemg 14410 srascag 14414 sratsetg 14417 sradsg 14420 zlmbasg 14601 zlmplusgg 14602 zlmmulrg 14603 zlmsca 14604 znbas2 14612 znadd 14613 znmul 14614 |
| Copyright terms: Public domain | W3C validator |