ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2dom GIF version

Theorem 2dom 6832
Description: A set that dominates ordinal 2 has at least 2 different members. (Contributed by NM, 25-Jul-2004.)
Assertion
Ref Expression
2dom (2o𝐴 → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem 2dom
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 df2o2 6457 . . . 4 2o = {∅, {∅}}
21breq1i 4025 . . 3 (2o𝐴 ↔ {∅, {∅}} ≼ 𝐴)
3 brdomi 6776 . . 3 ({∅, {∅}} ≼ 𝐴 → ∃𝑓 𝑓:{∅, {∅}}–1-1𝐴)
42, 3sylbi 121 . 2 (2o𝐴 → ∃𝑓 𝑓:{∅, {∅}}–1-1𝐴)
5 f1f 5440 . . . . 5 (𝑓:{∅, {∅}}–1-1𝐴𝑓:{∅, {∅}}⟶𝐴)
6 0ex 4145 . . . . . 6 ∅ ∈ V
76prid1 3713 . . . . 5 ∅ ∈ {∅, {∅}}
8 ffvelcdm 5670 . . . . 5 ((𝑓:{∅, {∅}}⟶𝐴 ∧ ∅ ∈ {∅, {∅}}) → (𝑓‘∅) ∈ 𝐴)
95, 7, 8sylancl 413 . . . 4 (𝑓:{∅, {∅}}–1-1𝐴 → (𝑓‘∅) ∈ 𝐴)
10 p0ex 4206 . . . . . 6 {∅} ∈ V
1110prid2 3714 . . . . 5 {∅} ∈ {∅, {∅}}
12 ffvelcdm 5670 . . . . 5 ((𝑓:{∅, {∅}}⟶𝐴 ∧ {∅} ∈ {∅, {∅}}) → (𝑓‘{∅}) ∈ 𝐴)
135, 11, 12sylancl 413 . . . 4 (𝑓:{∅, {∅}}–1-1𝐴 → (𝑓‘{∅}) ∈ 𝐴)
14 0nep0 4183 . . . . . 6 ∅ ≠ {∅}
1514neii 2362 . . . . 5 ¬ ∅ = {∅}
16 f1fveq 5794 . . . . . 6 ((𝑓:{∅, {∅}}–1-1𝐴 ∧ (∅ ∈ {∅, {∅}} ∧ {∅} ∈ {∅, {∅}})) → ((𝑓‘∅) = (𝑓‘{∅}) ↔ ∅ = {∅}))
177, 11, 16mpanr12 439 . . . . 5 (𝑓:{∅, {∅}}–1-1𝐴 → ((𝑓‘∅) = (𝑓‘{∅}) ↔ ∅ = {∅}))
1815, 17mtbiri 676 . . . 4 (𝑓:{∅, {∅}}–1-1𝐴 → ¬ (𝑓‘∅) = (𝑓‘{∅}))
19 eqeq1 2196 . . . . . 6 (𝑥 = (𝑓‘∅) → (𝑥 = 𝑦 ↔ (𝑓‘∅) = 𝑦))
2019notbid 668 . . . . 5 (𝑥 = (𝑓‘∅) → (¬ 𝑥 = 𝑦 ↔ ¬ (𝑓‘∅) = 𝑦))
21 eqeq2 2199 . . . . . 6 (𝑦 = (𝑓‘{∅}) → ((𝑓‘∅) = 𝑦 ↔ (𝑓‘∅) = (𝑓‘{∅})))
2221notbid 668 . . . . 5 (𝑦 = (𝑓‘{∅}) → (¬ (𝑓‘∅) = 𝑦 ↔ ¬ (𝑓‘∅) = (𝑓‘{∅})))
2320, 22rspc2ev 2871 . . . 4 (((𝑓‘∅) ∈ 𝐴 ∧ (𝑓‘{∅}) ∈ 𝐴 ∧ ¬ (𝑓‘∅) = (𝑓‘{∅})) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦)
249, 13, 18, 23syl3anc 1249 . . 3 (𝑓:{∅, {∅}}–1-1𝐴 → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦)
2524exlimiv 1609 . 2 (∃𝑓 𝑓:{∅, {∅}}–1-1𝐴 → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦)
264, 25syl 14 1 (2o𝐴 → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105   = wceq 1364  wex 1503  wcel 2160  wrex 2469  c0 3437  {csn 3607  {cpr 3608   class class class wbr 4018  wf 5231  1-1wf1 5232  cfv 5235  2oc2o 6436  cdom 6766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-id 4311  df-suc 4389  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fv 5243  df-1o 6442  df-2o 6443  df-dom 6769
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator