| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2dom | GIF version | ||
| Description: A set that dominates ordinal 2 has at least 2 different members. (Contributed by NM, 25-Jul-2004.) |
| Ref | Expression |
|---|---|
| 2dom | ⊢ (2o ≼ 𝐴 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df2o2 6530 | . . . 4 ⊢ 2o = {∅, {∅}} | |
| 2 | 1 | breq1i 4058 | . . 3 ⊢ (2o ≼ 𝐴 ↔ {∅, {∅}} ≼ 𝐴) |
| 3 | brdomi 6851 | . . 3 ⊢ ({∅, {∅}} ≼ 𝐴 → ∃𝑓 𝑓:{∅, {∅}}–1-1→𝐴) | |
| 4 | 2, 3 | sylbi 121 | . 2 ⊢ (2o ≼ 𝐴 → ∃𝑓 𝑓:{∅, {∅}}–1-1→𝐴) |
| 5 | f1f 5493 | . . . . 5 ⊢ (𝑓:{∅, {∅}}–1-1→𝐴 → 𝑓:{∅, {∅}}⟶𝐴) | |
| 6 | 0ex 4179 | . . . . . 6 ⊢ ∅ ∈ V | |
| 7 | 6 | prid1 3744 | . . . . 5 ⊢ ∅ ∈ {∅, {∅}} |
| 8 | ffvelcdm 5726 | . . . . 5 ⊢ ((𝑓:{∅, {∅}}⟶𝐴 ∧ ∅ ∈ {∅, {∅}}) → (𝑓‘∅) ∈ 𝐴) | |
| 9 | 5, 7, 8 | sylancl 413 | . . . 4 ⊢ (𝑓:{∅, {∅}}–1-1→𝐴 → (𝑓‘∅) ∈ 𝐴) |
| 10 | p0ex 4240 | . . . . . 6 ⊢ {∅} ∈ V | |
| 11 | 10 | prid2 3745 | . . . . 5 ⊢ {∅} ∈ {∅, {∅}} |
| 12 | ffvelcdm 5726 | . . . . 5 ⊢ ((𝑓:{∅, {∅}}⟶𝐴 ∧ {∅} ∈ {∅, {∅}}) → (𝑓‘{∅}) ∈ 𝐴) | |
| 13 | 5, 11, 12 | sylancl 413 | . . . 4 ⊢ (𝑓:{∅, {∅}}–1-1→𝐴 → (𝑓‘{∅}) ∈ 𝐴) |
| 14 | 0nep0 4217 | . . . . . 6 ⊢ ∅ ≠ {∅} | |
| 15 | 14 | neii 2379 | . . . . 5 ⊢ ¬ ∅ = {∅} |
| 16 | f1fveq 5854 | . . . . . 6 ⊢ ((𝑓:{∅, {∅}}–1-1→𝐴 ∧ (∅ ∈ {∅, {∅}} ∧ {∅} ∈ {∅, {∅}})) → ((𝑓‘∅) = (𝑓‘{∅}) ↔ ∅ = {∅})) | |
| 17 | 7, 11, 16 | mpanr12 439 | . . . . 5 ⊢ (𝑓:{∅, {∅}}–1-1→𝐴 → ((𝑓‘∅) = (𝑓‘{∅}) ↔ ∅ = {∅})) |
| 18 | 15, 17 | mtbiri 677 | . . . 4 ⊢ (𝑓:{∅, {∅}}–1-1→𝐴 → ¬ (𝑓‘∅) = (𝑓‘{∅})) |
| 19 | eqeq1 2213 | . . . . . 6 ⊢ (𝑥 = (𝑓‘∅) → (𝑥 = 𝑦 ↔ (𝑓‘∅) = 𝑦)) | |
| 20 | 19 | notbid 669 | . . . . 5 ⊢ (𝑥 = (𝑓‘∅) → (¬ 𝑥 = 𝑦 ↔ ¬ (𝑓‘∅) = 𝑦)) |
| 21 | eqeq2 2216 | . . . . . 6 ⊢ (𝑦 = (𝑓‘{∅}) → ((𝑓‘∅) = 𝑦 ↔ (𝑓‘∅) = (𝑓‘{∅}))) | |
| 22 | 21 | notbid 669 | . . . . 5 ⊢ (𝑦 = (𝑓‘{∅}) → (¬ (𝑓‘∅) = 𝑦 ↔ ¬ (𝑓‘∅) = (𝑓‘{∅}))) |
| 23 | 20, 22 | rspc2ev 2896 | . . . 4 ⊢ (((𝑓‘∅) ∈ 𝐴 ∧ (𝑓‘{∅}) ∈ 𝐴 ∧ ¬ (𝑓‘∅) = (𝑓‘{∅})) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦) |
| 24 | 9, 13, 18, 23 | syl3anc 1250 | . . 3 ⊢ (𝑓:{∅, {∅}}–1-1→𝐴 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦) |
| 25 | 24 | exlimiv 1622 | . 2 ⊢ (∃𝑓 𝑓:{∅, {∅}}–1-1→𝐴 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦) |
| 26 | 4, 25 | syl 14 | 1 ⊢ (2o ≼ 𝐴 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 = wceq 1373 ∃wex 1516 ∈ wcel 2177 ∃wrex 2486 ∅c0 3464 {csn 3638 {cpr 3639 class class class wbr 4051 ⟶wf 5276 –1-1→wf1 5277 ‘cfv 5280 2oc2o 6509 ≼ cdom 6839 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-id 4348 df-suc 4426 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fv 5288 df-1o 6515 df-2o 6516 df-dom 6842 |
| This theorem is referenced by: fundm2domnop0 11012 isnzr2 14021 |
| Copyright terms: Public domain | W3C validator |