ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2dom GIF version

Theorem 2dom 6807
Description: A set that dominates ordinal 2 has at least 2 different members. (Contributed by NM, 25-Jul-2004.)
Assertion
Ref Expression
2dom (2o𝐴 → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem 2dom
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 df2o2 6434 . . . 4 2o = {∅, {∅}}
21breq1i 4012 . . 3 (2o𝐴 ↔ {∅, {∅}} ≼ 𝐴)
3 brdomi 6751 . . 3 ({∅, {∅}} ≼ 𝐴 → ∃𝑓 𝑓:{∅, {∅}}–1-1𝐴)
42, 3sylbi 121 . 2 (2o𝐴 → ∃𝑓 𝑓:{∅, {∅}}–1-1𝐴)
5 f1f 5423 . . . . 5 (𝑓:{∅, {∅}}–1-1𝐴𝑓:{∅, {∅}}⟶𝐴)
6 0ex 4132 . . . . . 6 ∅ ∈ V
76prid1 3700 . . . . 5 ∅ ∈ {∅, {∅}}
8 ffvelcdm 5651 . . . . 5 ((𝑓:{∅, {∅}}⟶𝐴 ∧ ∅ ∈ {∅, {∅}}) → (𝑓‘∅) ∈ 𝐴)
95, 7, 8sylancl 413 . . . 4 (𝑓:{∅, {∅}}–1-1𝐴 → (𝑓‘∅) ∈ 𝐴)
10 p0ex 4190 . . . . . 6 {∅} ∈ V
1110prid2 3701 . . . . 5 {∅} ∈ {∅, {∅}}
12 ffvelcdm 5651 . . . . 5 ((𝑓:{∅, {∅}}⟶𝐴 ∧ {∅} ∈ {∅, {∅}}) → (𝑓‘{∅}) ∈ 𝐴)
135, 11, 12sylancl 413 . . . 4 (𝑓:{∅, {∅}}–1-1𝐴 → (𝑓‘{∅}) ∈ 𝐴)
14 0nep0 4167 . . . . . 6 ∅ ≠ {∅}
1514neii 2349 . . . . 5 ¬ ∅ = {∅}
16 f1fveq 5775 . . . . . 6 ((𝑓:{∅, {∅}}–1-1𝐴 ∧ (∅ ∈ {∅, {∅}} ∧ {∅} ∈ {∅, {∅}})) → ((𝑓‘∅) = (𝑓‘{∅}) ↔ ∅ = {∅}))
177, 11, 16mpanr12 439 . . . . 5 (𝑓:{∅, {∅}}–1-1𝐴 → ((𝑓‘∅) = (𝑓‘{∅}) ↔ ∅ = {∅}))
1815, 17mtbiri 675 . . . 4 (𝑓:{∅, {∅}}–1-1𝐴 → ¬ (𝑓‘∅) = (𝑓‘{∅}))
19 eqeq1 2184 . . . . . 6 (𝑥 = (𝑓‘∅) → (𝑥 = 𝑦 ↔ (𝑓‘∅) = 𝑦))
2019notbid 667 . . . . 5 (𝑥 = (𝑓‘∅) → (¬ 𝑥 = 𝑦 ↔ ¬ (𝑓‘∅) = 𝑦))
21 eqeq2 2187 . . . . . 6 (𝑦 = (𝑓‘{∅}) → ((𝑓‘∅) = 𝑦 ↔ (𝑓‘∅) = (𝑓‘{∅})))
2221notbid 667 . . . . 5 (𝑦 = (𝑓‘{∅}) → (¬ (𝑓‘∅) = 𝑦 ↔ ¬ (𝑓‘∅) = (𝑓‘{∅})))
2320, 22rspc2ev 2858 . . . 4 (((𝑓‘∅) ∈ 𝐴 ∧ (𝑓‘{∅}) ∈ 𝐴 ∧ ¬ (𝑓‘∅) = (𝑓‘{∅})) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦)
249, 13, 18, 23syl3anc 1238 . . 3 (𝑓:{∅, {∅}}–1-1𝐴 → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦)
2524exlimiv 1598 . 2 (∃𝑓 𝑓:{∅, {∅}}–1-1𝐴 → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦)
264, 25syl 14 1 (2o𝐴 → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105   = wceq 1353  wex 1492  wcel 2148  wrex 2456  c0 3424  {csn 3594  {cpr 3595   class class class wbr 4005  wf 5214  1-1wf1 5215  cfv 5218  2oc2o 6413  cdom 6741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-suc 4373  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fv 5226  df-1o 6419  df-2o 6420  df-dom 6744
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator