| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2dom | GIF version | ||
| Description: A set that dominates ordinal 2 has at least 2 different members. (Contributed by NM, 25-Jul-2004.) |
| Ref | Expression |
|---|---|
| 2dom | ⊢ (2o ≼ 𝐴 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df2o2 6507 | . . . 4 ⊢ 2o = {∅, {∅}} | |
| 2 | 1 | breq1i 4050 | . . 3 ⊢ (2o ≼ 𝐴 ↔ {∅, {∅}} ≼ 𝐴) |
| 3 | brdomi 6826 | . . 3 ⊢ ({∅, {∅}} ≼ 𝐴 → ∃𝑓 𝑓:{∅, {∅}}–1-1→𝐴) | |
| 4 | 2, 3 | sylbi 121 | . 2 ⊢ (2o ≼ 𝐴 → ∃𝑓 𝑓:{∅, {∅}}–1-1→𝐴) |
| 5 | f1f 5475 | . . . . 5 ⊢ (𝑓:{∅, {∅}}–1-1→𝐴 → 𝑓:{∅, {∅}}⟶𝐴) | |
| 6 | 0ex 4170 | . . . . . 6 ⊢ ∅ ∈ V | |
| 7 | 6 | prid1 3738 | . . . . 5 ⊢ ∅ ∈ {∅, {∅}} |
| 8 | ffvelcdm 5707 | . . . . 5 ⊢ ((𝑓:{∅, {∅}}⟶𝐴 ∧ ∅ ∈ {∅, {∅}}) → (𝑓‘∅) ∈ 𝐴) | |
| 9 | 5, 7, 8 | sylancl 413 | . . . 4 ⊢ (𝑓:{∅, {∅}}–1-1→𝐴 → (𝑓‘∅) ∈ 𝐴) |
| 10 | p0ex 4231 | . . . . . 6 ⊢ {∅} ∈ V | |
| 11 | 10 | prid2 3739 | . . . . 5 ⊢ {∅} ∈ {∅, {∅}} |
| 12 | ffvelcdm 5707 | . . . . 5 ⊢ ((𝑓:{∅, {∅}}⟶𝐴 ∧ {∅} ∈ {∅, {∅}}) → (𝑓‘{∅}) ∈ 𝐴) | |
| 13 | 5, 11, 12 | sylancl 413 | . . . 4 ⊢ (𝑓:{∅, {∅}}–1-1→𝐴 → (𝑓‘{∅}) ∈ 𝐴) |
| 14 | 0nep0 4208 | . . . . . 6 ⊢ ∅ ≠ {∅} | |
| 15 | 14 | neii 2377 | . . . . 5 ⊢ ¬ ∅ = {∅} |
| 16 | f1fveq 5831 | . . . . . 6 ⊢ ((𝑓:{∅, {∅}}–1-1→𝐴 ∧ (∅ ∈ {∅, {∅}} ∧ {∅} ∈ {∅, {∅}})) → ((𝑓‘∅) = (𝑓‘{∅}) ↔ ∅ = {∅})) | |
| 17 | 7, 11, 16 | mpanr12 439 | . . . . 5 ⊢ (𝑓:{∅, {∅}}–1-1→𝐴 → ((𝑓‘∅) = (𝑓‘{∅}) ↔ ∅ = {∅})) |
| 18 | 15, 17 | mtbiri 676 | . . . 4 ⊢ (𝑓:{∅, {∅}}–1-1→𝐴 → ¬ (𝑓‘∅) = (𝑓‘{∅})) |
| 19 | eqeq1 2211 | . . . . . 6 ⊢ (𝑥 = (𝑓‘∅) → (𝑥 = 𝑦 ↔ (𝑓‘∅) = 𝑦)) | |
| 20 | 19 | notbid 668 | . . . . 5 ⊢ (𝑥 = (𝑓‘∅) → (¬ 𝑥 = 𝑦 ↔ ¬ (𝑓‘∅) = 𝑦)) |
| 21 | eqeq2 2214 | . . . . . 6 ⊢ (𝑦 = (𝑓‘{∅}) → ((𝑓‘∅) = 𝑦 ↔ (𝑓‘∅) = (𝑓‘{∅}))) | |
| 22 | 21 | notbid 668 | . . . . 5 ⊢ (𝑦 = (𝑓‘{∅}) → (¬ (𝑓‘∅) = 𝑦 ↔ ¬ (𝑓‘∅) = (𝑓‘{∅}))) |
| 23 | 20, 22 | rspc2ev 2891 | . . . 4 ⊢ (((𝑓‘∅) ∈ 𝐴 ∧ (𝑓‘{∅}) ∈ 𝐴 ∧ ¬ (𝑓‘∅) = (𝑓‘{∅})) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦) |
| 24 | 9, 13, 18, 23 | syl3anc 1249 | . . 3 ⊢ (𝑓:{∅, {∅}}–1-1→𝐴 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦) |
| 25 | 24 | exlimiv 1620 | . 2 ⊢ (∃𝑓 𝑓:{∅, {∅}}–1-1→𝐴 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦) |
| 26 | 4, 25 | syl 14 | 1 ⊢ (2o ≼ 𝐴 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 = wceq 1372 ∃wex 1514 ∈ wcel 2175 ∃wrex 2484 ∅c0 3459 {csn 3632 {cpr 3633 class class class wbr 4043 ⟶wf 5264 –1-1→wf1 5265 ‘cfv 5268 2oc2o 6486 ≼ cdom 6816 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4478 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-id 4338 df-suc 4416 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-f1 5273 df-fv 5276 df-1o 6492 df-2o 6493 df-dom 6819 |
| This theorem is referenced by: isnzr2 13864 |
| Copyright terms: Public domain | W3C validator |