![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2dom | GIF version |
Description: A set that dominates ordinal 2 has at least 2 different members. (Contributed by NM, 25-Jul-2004.) |
Ref | Expression |
---|---|
2dom | ⊢ (2o ≼ 𝐴 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df2o2 6434 | . . . 4 ⊢ 2o = {∅, {∅}} | |
2 | 1 | breq1i 4012 | . . 3 ⊢ (2o ≼ 𝐴 ↔ {∅, {∅}} ≼ 𝐴) |
3 | brdomi 6751 | . . 3 ⊢ ({∅, {∅}} ≼ 𝐴 → ∃𝑓 𝑓:{∅, {∅}}–1-1→𝐴) | |
4 | 2, 3 | sylbi 121 | . 2 ⊢ (2o ≼ 𝐴 → ∃𝑓 𝑓:{∅, {∅}}–1-1→𝐴) |
5 | f1f 5423 | . . . . 5 ⊢ (𝑓:{∅, {∅}}–1-1→𝐴 → 𝑓:{∅, {∅}}⟶𝐴) | |
6 | 0ex 4132 | . . . . . 6 ⊢ ∅ ∈ V | |
7 | 6 | prid1 3700 | . . . . 5 ⊢ ∅ ∈ {∅, {∅}} |
8 | ffvelcdm 5651 | . . . . 5 ⊢ ((𝑓:{∅, {∅}}⟶𝐴 ∧ ∅ ∈ {∅, {∅}}) → (𝑓‘∅) ∈ 𝐴) | |
9 | 5, 7, 8 | sylancl 413 | . . . 4 ⊢ (𝑓:{∅, {∅}}–1-1→𝐴 → (𝑓‘∅) ∈ 𝐴) |
10 | p0ex 4190 | . . . . . 6 ⊢ {∅} ∈ V | |
11 | 10 | prid2 3701 | . . . . 5 ⊢ {∅} ∈ {∅, {∅}} |
12 | ffvelcdm 5651 | . . . . 5 ⊢ ((𝑓:{∅, {∅}}⟶𝐴 ∧ {∅} ∈ {∅, {∅}}) → (𝑓‘{∅}) ∈ 𝐴) | |
13 | 5, 11, 12 | sylancl 413 | . . . 4 ⊢ (𝑓:{∅, {∅}}–1-1→𝐴 → (𝑓‘{∅}) ∈ 𝐴) |
14 | 0nep0 4167 | . . . . . 6 ⊢ ∅ ≠ {∅} | |
15 | 14 | neii 2349 | . . . . 5 ⊢ ¬ ∅ = {∅} |
16 | f1fveq 5775 | . . . . . 6 ⊢ ((𝑓:{∅, {∅}}–1-1→𝐴 ∧ (∅ ∈ {∅, {∅}} ∧ {∅} ∈ {∅, {∅}})) → ((𝑓‘∅) = (𝑓‘{∅}) ↔ ∅ = {∅})) | |
17 | 7, 11, 16 | mpanr12 439 | . . . . 5 ⊢ (𝑓:{∅, {∅}}–1-1→𝐴 → ((𝑓‘∅) = (𝑓‘{∅}) ↔ ∅ = {∅})) |
18 | 15, 17 | mtbiri 675 | . . . 4 ⊢ (𝑓:{∅, {∅}}–1-1→𝐴 → ¬ (𝑓‘∅) = (𝑓‘{∅})) |
19 | eqeq1 2184 | . . . . . 6 ⊢ (𝑥 = (𝑓‘∅) → (𝑥 = 𝑦 ↔ (𝑓‘∅) = 𝑦)) | |
20 | 19 | notbid 667 | . . . . 5 ⊢ (𝑥 = (𝑓‘∅) → (¬ 𝑥 = 𝑦 ↔ ¬ (𝑓‘∅) = 𝑦)) |
21 | eqeq2 2187 | . . . . . 6 ⊢ (𝑦 = (𝑓‘{∅}) → ((𝑓‘∅) = 𝑦 ↔ (𝑓‘∅) = (𝑓‘{∅}))) | |
22 | 21 | notbid 667 | . . . . 5 ⊢ (𝑦 = (𝑓‘{∅}) → (¬ (𝑓‘∅) = 𝑦 ↔ ¬ (𝑓‘∅) = (𝑓‘{∅}))) |
23 | 20, 22 | rspc2ev 2858 | . . . 4 ⊢ (((𝑓‘∅) ∈ 𝐴 ∧ (𝑓‘{∅}) ∈ 𝐴 ∧ ¬ (𝑓‘∅) = (𝑓‘{∅})) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦) |
24 | 9, 13, 18, 23 | syl3anc 1238 | . . 3 ⊢ (𝑓:{∅, {∅}}–1-1→𝐴 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦) |
25 | 24 | exlimiv 1598 | . 2 ⊢ (∃𝑓 𝑓:{∅, {∅}}–1-1→𝐴 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦) |
26 | 4, 25 | syl 14 | 1 ⊢ (2o ≼ 𝐴 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 = wceq 1353 ∃wex 1492 ∈ wcel 2148 ∃wrex 2456 ∅c0 3424 {csn 3594 {cpr 3595 class class class wbr 4005 ⟶wf 5214 –1-1→wf1 5215 ‘cfv 5218 2oc2o 6413 ≼ cdom 6741 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-id 4295 df-suc 4373 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fv 5226 df-1o 6419 df-2o 6420 df-dom 6744 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |