| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2dom | GIF version | ||
| Description: A set that dominates ordinal 2 has at least 2 different members. (Contributed by NM, 25-Jul-2004.) |
| Ref | Expression |
|---|---|
| 2dom | ⊢ (2o ≼ 𝐴 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df2o2 6575 | . . . 4 ⊢ 2o = {∅, {∅}} | |
| 2 | 1 | breq1i 4089 | . . 3 ⊢ (2o ≼ 𝐴 ↔ {∅, {∅}} ≼ 𝐴) |
| 3 | brdomi 6896 | . . 3 ⊢ ({∅, {∅}} ≼ 𝐴 → ∃𝑓 𝑓:{∅, {∅}}–1-1→𝐴) | |
| 4 | 2, 3 | sylbi 121 | . 2 ⊢ (2o ≼ 𝐴 → ∃𝑓 𝑓:{∅, {∅}}–1-1→𝐴) |
| 5 | f1f 5530 | . . . . 5 ⊢ (𝑓:{∅, {∅}}–1-1→𝐴 → 𝑓:{∅, {∅}}⟶𝐴) | |
| 6 | 0ex 4210 | . . . . . 6 ⊢ ∅ ∈ V | |
| 7 | 6 | prid1 3772 | . . . . 5 ⊢ ∅ ∈ {∅, {∅}} |
| 8 | ffvelcdm 5767 | . . . . 5 ⊢ ((𝑓:{∅, {∅}}⟶𝐴 ∧ ∅ ∈ {∅, {∅}}) → (𝑓‘∅) ∈ 𝐴) | |
| 9 | 5, 7, 8 | sylancl 413 | . . . 4 ⊢ (𝑓:{∅, {∅}}–1-1→𝐴 → (𝑓‘∅) ∈ 𝐴) |
| 10 | p0ex 4271 | . . . . . 6 ⊢ {∅} ∈ V | |
| 11 | 10 | prid2 3773 | . . . . 5 ⊢ {∅} ∈ {∅, {∅}} |
| 12 | ffvelcdm 5767 | . . . . 5 ⊢ ((𝑓:{∅, {∅}}⟶𝐴 ∧ {∅} ∈ {∅, {∅}}) → (𝑓‘{∅}) ∈ 𝐴) | |
| 13 | 5, 11, 12 | sylancl 413 | . . . 4 ⊢ (𝑓:{∅, {∅}}–1-1→𝐴 → (𝑓‘{∅}) ∈ 𝐴) |
| 14 | 0nep0 4248 | . . . . . 6 ⊢ ∅ ≠ {∅} | |
| 15 | 14 | neii 2402 | . . . . 5 ⊢ ¬ ∅ = {∅} |
| 16 | f1fveq 5895 | . . . . . 6 ⊢ ((𝑓:{∅, {∅}}–1-1→𝐴 ∧ (∅ ∈ {∅, {∅}} ∧ {∅} ∈ {∅, {∅}})) → ((𝑓‘∅) = (𝑓‘{∅}) ↔ ∅ = {∅})) | |
| 17 | 7, 11, 16 | mpanr12 439 | . . . . 5 ⊢ (𝑓:{∅, {∅}}–1-1→𝐴 → ((𝑓‘∅) = (𝑓‘{∅}) ↔ ∅ = {∅})) |
| 18 | 15, 17 | mtbiri 679 | . . . 4 ⊢ (𝑓:{∅, {∅}}–1-1→𝐴 → ¬ (𝑓‘∅) = (𝑓‘{∅})) |
| 19 | eqeq1 2236 | . . . . . 6 ⊢ (𝑥 = (𝑓‘∅) → (𝑥 = 𝑦 ↔ (𝑓‘∅) = 𝑦)) | |
| 20 | 19 | notbid 671 | . . . . 5 ⊢ (𝑥 = (𝑓‘∅) → (¬ 𝑥 = 𝑦 ↔ ¬ (𝑓‘∅) = 𝑦)) |
| 21 | eqeq2 2239 | . . . . . 6 ⊢ (𝑦 = (𝑓‘{∅}) → ((𝑓‘∅) = 𝑦 ↔ (𝑓‘∅) = (𝑓‘{∅}))) | |
| 22 | 21 | notbid 671 | . . . . 5 ⊢ (𝑦 = (𝑓‘{∅}) → (¬ (𝑓‘∅) = 𝑦 ↔ ¬ (𝑓‘∅) = (𝑓‘{∅}))) |
| 23 | 20, 22 | rspc2ev 2922 | . . . 4 ⊢ (((𝑓‘∅) ∈ 𝐴 ∧ (𝑓‘{∅}) ∈ 𝐴 ∧ ¬ (𝑓‘∅) = (𝑓‘{∅})) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦) |
| 24 | 9, 13, 18, 23 | syl3anc 1271 | . . 3 ⊢ (𝑓:{∅, {∅}}–1-1→𝐴 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦) |
| 25 | 24 | exlimiv 1644 | . 2 ⊢ (∃𝑓 𝑓:{∅, {∅}}–1-1→𝐴 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦) |
| 26 | 4, 25 | syl 14 | 1 ⊢ (2o ≼ 𝐴 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 = wceq 1395 ∃wex 1538 ∈ wcel 2200 ∃wrex 2509 ∅c0 3491 {csn 3666 {cpr 3667 class class class wbr 4082 ⟶wf 5313 –1-1→wf1 5314 ‘cfv 5317 2oc2o 6554 ≼ cdom 6884 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4383 df-suc 4461 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fv 5325 df-1o 6560 df-2o 6561 df-dom 6887 |
| This theorem is referenced by: fundm2domnop0 11062 isnzr2 14142 |
| Copyright terms: Public domain | W3C validator |