Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2dom | GIF version |
Description: A set that dominates ordinal 2 has at least 2 different members. (Contributed by NM, 25-Jul-2004.) |
Ref | Expression |
---|---|
2dom | ⊢ (2o ≼ 𝐴 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df2o2 6399 | . . . 4 ⊢ 2o = {∅, {∅}} | |
2 | 1 | breq1i 3989 | . . 3 ⊢ (2o ≼ 𝐴 ↔ {∅, {∅}} ≼ 𝐴) |
3 | brdomi 6715 | . . 3 ⊢ ({∅, {∅}} ≼ 𝐴 → ∃𝑓 𝑓:{∅, {∅}}–1-1→𝐴) | |
4 | 2, 3 | sylbi 120 | . 2 ⊢ (2o ≼ 𝐴 → ∃𝑓 𝑓:{∅, {∅}}–1-1→𝐴) |
5 | f1f 5393 | . . . . 5 ⊢ (𝑓:{∅, {∅}}–1-1→𝐴 → 𝑓:{∅, {∅}}⟶𝐴) | |
6 | 0ex 4109 | . . . . . 6 ⊢ ∅ ∈ V | |
7 | 6 | prid1 3682 | . . . . 5 ⊢ ∅ ∈ {∅, {∅}} |
8 | ffvelrn 5618 | . . . . 5 ⊢ ((𝑓:{∅, {∅}}⟶𝐴 ∧ ∅ ∈ {∅, {∅}}) → (𝑓‘∅) ∈ 𝐴) | |
9 | 5, 7, 8 | sylancl 410 | . . . 4 ⊢ (𝑓:{∅, {∅}}–1-1→𝐴 → (𝑓‘∅) ∈ 𝐴) |
10 | p0ex 4167 | . . . . . 6 ⊢ {∅} ∈ V | |
11 | 10 | prid2 3683 | . . . . 5 ⊢ {∅} ∈ {∅, {∅}} |
12 | ffvelrn 5618 | . . . . 5 ⊢ ((𝑓:{∅, {∅}}⟶𝐴 ∧ {∅} ∈ {∅, {∅}}) → (𝑓‘{∅}) ∈ 𝐴) | |
13 | 5, 11, 12 | sylancl 410 | . . . 4 ⊢ (𝑓:{∅, {∅}}–1-1→𝐴 → (𝑓‘{∅}) ∈ 𝐴) |
14 | 0nep0 4144 | . . . . . 6 ⊢ ∅ ≠ {∅} | |
15 | 14 | neii 2338 | . . . . 5 ⊢ ¬ ∅ = {∅} |
16 | f1fveq 5740 | . . . . . 6 ⊢ ((𝑓:{∅, {∅}}–1-1→𝐴 ∧ (∅ ∈ {∅, {∅}} ∧ {∅} ∈ {∅, {∅}})) → ((𝑓‘∅) = (𝑓‘{∅}) ↔ ∅ = {∅})) | |
17 | 7, 11, 16 | mpanr12 436 | . . . . 5 ⊢ (𝑓:{∅, {∅}}–1-1→𝐴 → ((𝑓‘∅) = (𝑓‘{∅}) ↔ ∅ = {∅})) |
18 | 15, 17 | mtbiri 665 | . . . 4 ⊢ (𝑓:{∅, {∅}}–1-1→𝐴 → ¬ (𝑓‘∅) = (𝑓‘{∅})) |
19 | eqeq1 2172 | . . . . . 6 ⊢ (𝑥 = (𝑓‘∅) → (𝑥 = 𝑦 ↔ (𝑓‘∅) = 𝑦)) | |
20 | 19 | notbid 657 | . . . . 5 ⊢ (𝑥 = (𝑓‘∅) → (¬ 𝑥 = 𝑦 ↔ ¬ (𝑓‘∅) = 𝑦)) |
21 | eqeq2 2175 | . . . . . 6 ⊢ (𝑦 = (𝑓‘{∅}) → ((𝑓‘∅) = 𝑦 ↔ (𝑓‘∅) = (𝑓‘{∅}))) | |
22 | 21 | notbid 657 | . . . . 5 ⊢ (𝑦 = (𝑓‘{∅}) → (¬ (𝑓‘∅) = 𝑦 ↔ ¬ (𝑓‘∅) = (𝑓‘{∅}))) |
23 | 20, 22 | rspc2ev 2845 | . . . 4 ⊢ (((𝑓‘∅) ∈ 𝐴 ∧ (𝑓‘{∅}) ∈ 𝐴 ∧ ¬ (𝑓‘∅) = (𝑓‘{∅})) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦) |
24 | 9, 13, 18, 23 | syl3anc 1228 | . . 3 ⊢ (𝑓:{∅, {∅}}–1-1→𝐴 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦) |
25 | 24 | exlimiv 1586 | . 2 ⊢ (∃𝑓 𝑓:{∅, {∅}}–1-1→𝐴 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦) |
26 | 4, 25 | syl 14 | 1 ⊢ (2o ≼ 𝐴 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 104 = wceq 1343 ∃wex 1480 ∈ wcel 2136 ∃wrex 2445 ∅c0 3409 {csn 3576 {cpr 3577 class class class wbr 3982 ⟶wf 5184 –1-1→wf1 5185 ‘cfv 5188 2oc2o 6378 ≼ cdom 6705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-suc 4349 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fv 5196 df-1o 6384 df-2o 6385 df-dom 6708 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |