Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0opn | GIF version |
Description: The empty set is an open subset of any topology. (Contributed by Stefan Allan, 27-Feb-2006.) |
Ref | Expression |
---|---|
0opn | ⊢ (𝐽 ∈ Top → ∅ ∈ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uni0 3832 | . 2 ⊢ ∪ ∅ = ∅ | |
2 | 0ss 3459 | . . 3 ⊢ ∅ ⊆ 𝐽 | |
3 | uniopn 13050 | . . 3 ⊢ ((𝐽 ∈ Top ∧ ∅ ⊆ 𝐽) → ∪ ∅ ∈ 𝐽) | |
4 | 2, 3 | mpan2 425 | . 2 ⊢ (𝐽 ∈ Top → ∪ ∅ ∈ 𝐽) |
5 | 1, 4 | eqeltrrid 2263 | 1 ⊢ (𝐽 ∈ Top → ∅ ∈ 𝐽) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2146 ⊆ wss 3127 ∅c0 3420 ∪ cuni 3805 Topctop 13046 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 ax-sep 4116 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-dif 3129 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-uni 3806 df-top 13047 |
This theorem is referenced by: 0ntop 13056 topgele 13078 istps 13081 topontopn 13086 tgclb 13116 en1top 13128 topcld 13160 ntr0 13185 0nei 13217 restrcl 13218 rest0 13230 mopn0 13539 |
Copyright terms: Public domain | W3C validator |