Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0opn | GIF version |
Description: The empty set is an open subset of any topology. (Contributed by Stefan Allan, 27-Feb-2006.) |
Ref | Expression |
---|---|
0opn | ⊢ (𝐽 ∈ Top → ∅ ∈ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uni0 3823 | . 2 ⊢ ∪ ∅ = ∅ | |
2 | 0ss 3453 | . . 3 ⊢ ∅ ⊆ 𝐽 | |
3 | uniopn 12793 | . . 3 ⊢ ((𝐽 ∈ Top ∧ ∅ ⊆ 𝐽) → ∪ ∅ ∈ 𝐽) | |
4 | 2, 3 | mpan2 423 | . 2 ⊢ (𝐽 ∈ Top → ∪ ∅ ∈ 𝐽) |
5 | 1, 4 | eqeltrrid 2258 | 1 ⊢ (𝐽 ∈ Top → ∅ ∈ 𝐽) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2141 ⊆ wss 3121 ∅c0 3414 ∪ cuni 3796 Topctop 12789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-sep 4107 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-uni 3797 df-top 12790 |
This theorem is referenced by: 0ntop 12799 topgele 12821 istps 12824 topontopn 12829 tgclb 12859 en1top 12871 topcld 12903 ntr0 12928 0nei 12960 restrcl 12961 rest0 12973 mopn0 13282 |
Copyright terms: Public domain | W3C validator |