ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0opn GIF version

Theorem 0opn 14174
Description: The empty set is an open subset of any topology. (Contributed by Stefan Allan, 27-Feb-2006.)
Assertion
Ref Expression
0opn (𝐽 ∈ Top → ∅ ∈ 𝐽)

Proof of Theorem 0opn
StepHypRef Expression
1 uni0 3862 . 2 ∅ = ∅
2 0ss 3485 . . 3 ∅ ⊆ 𝐽
3 uniopn 14169 . . 3 ((𝐽 ∈ Top ∧ ∅ ⊆ 𝐽) → ∅ ∈ 𝐽)
42, 3mpan2 425 . 2 (𝐽 ∈ Top → ∅ ∈ 𝐽)
51, 4eqeltrrid 2281 1 (𝐽 ∈ Top → ∅ ∈ 𝐽)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2164  wss 3153  c0 3446   cuni 3835  Topctop 14165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-sep 4147
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3155  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-uni 3836  df-top 14166
This theorem is referenced by:  0ntop  14175  topgele  14197  istps  14200  topontopn  14205  tgclb  14233  en1top  14245  topcld  14277  ntr0  14302  0nei  14334  restrcl  14335  rest0  14347  mopn0  14656
  Copyright terms: Public domain W3C validator