ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0opn GIF version

Theorem 0opn 14242
Description: The empty set is an open subset of any topology. (Contributed by Stefan Allan, 27-Feb-2006.)
Assertion
Ref Expression
0opn (𝐽 ∈ Top → ∅ ∈ 𝐽)

Proof of Theorem 0opn
StepHypRef Expression
1 uni0 3866 . 2 ∅ = ∅
2 0ss 3489 . . 3 ∅ ⊆ 𝐽
3 uniopn 14237 . . 3 ((𝐽 ∈ Top ∧ ∅ ⊆ 𝐽) → ∅ ∈ 𝐽)
42, 3mpan2 425 . 2 (𝐽 ∈ Top → ∅ ∈ 𝐽)
51, 4eqeltrrid 2284 1 (𝐽 ∈ Top → ∅ ∈ 𝐽)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2167  wss 3157  c0 3450   cuni 3839  Topctop 14233
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-sep 4151
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-uni 3840  df-top 14234
This theorem is referenced by:  0ntop  14243  topgele  14265  istps  14268  topontopn  14273  tgclb  14301  en1top  14313  topcld  14345  ntr0  14370  0nei  14402  restrcl  14403  rest0  14415  mopn0  14724
  Copyright terms: Public domain W3C validator