| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0opn | GIF version | ||
| Description: The empty set is an open subset of any topology. (Contributed by Stefan Allan, 27-Feb-2006.) |
| Ref | Expression |
|---|---|
| 0opn | ⊢ (𝐽 ∈ Top → ∅ ∈ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uni0 3914 | . 2 ⊢ ∪ ∅ = ∅ | |
| 2 | 0ss 3530 | . . 3 ⊢ ∅ ⊆ 𝐽 | |
| 3 | uniopn 14660 | . . 3 ⊢ ((𝐽 ∈ Top ∧ ∅ ⊆ 𝐽) → ∪ ∅ ∈ 𝐽) | |
| 4 | 2, 3 | mpan2 425 | . 2 ⊢ (𝐽 ∈ Top → ∪ ∅ ∈ 𝐽) |
| 5 | 1, 4 | eqeltrrid 2317 | 1 ⊢ (𝐽 ∈ Top → ∅ ∈ 𝐽) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 ⊆ wss 3197 ∅c0 3491 ∪ cuni 3887 Topctop 14656 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4201 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-uni 3888 df-top 14657 |
| This theorem is referenced by: 0ntop 14666 topgele 14688 istps 14691 topontopn 14696 tgclb 14724 en1top 14736 topcld 14768 ntr0 14793 0nei 14825 restrcl 14826 rest0 14838 mopn0 15147 |
| Copyright terms: Public domain | W3C validator |