ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0opn GIF version

Theorem 0opn 12798
Description: The empty set is an open subset of any topology. (Contributed by Stefan Allan, 27-Feb-2006.)
Assertion
Ref Expression
0opn (𝐽 ∈ Top → ∅ ∈ 𝐽)

Proof of Theorem 0opn
StepHypRef Expression
1 uni0 3823 . 2 ∅ = ∅
2 0ss 3453 . . 3 ∅ ⊆ 𝐽
3 uniopn 12793 . . 3 ((𝐽 ∈ Top ∧ ∅ ⊆ 𝐽) → ∅ ∈ 𝐽)
42, 3mpan2 423 . 2 (𝐽 ∈ Top → ∅ ∈ 𝐽)
51, 4eqeltrrid 2258 1 (𝐽 ∈ Top → ∅ ∈ 𝐽)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2141  wss 3121  c0 3414   cuni 3796  Topctop 12789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-sep 4107
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-dif 3123  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-uni 3797  df-top 12790
This theorem is referenced by:  0ntop  12799  topgele  12821  istps  12824  topontopn  12829  tgclb  12859  en1top  12871  topcld  12903  ntr0  12928  0nei  12960  restrcl  12961  rest0  12973  mopn0  13282
  Copyright terms: Public domain W3C validator