| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0opn | GIF version | ||
| Description: The empty set is an open subset of any topology. (Contributed by Stefan Allan, 27-Feb-2006.) |
| Ref | Expression |
|---|---|
| 0opn | ⊢ (𝐽 ∈ Top → ∅ ∈ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uni0 3882 | . 2 ⊢ ∪ ∅ = ∅ | |
| 2 | 0ss 3503 | . . 3 ⊢ ∅ ⊆ 𝐽 | |
| 3 | uniopn 14543 | . . 3 ⊢ ((𝐽 ∈ Top ∧ ∅ ⊆ 𝐽) → ∪ ∅ ∈ 𝐽) | |
| 4 | 2, 3 | mpan2 425 | . 2 ⊢ (𝐽 ∈ Top → ∪ ∅ ∈ 𝐽) |
| 5 | 1, 4 | eqeltrrid 2294 | 1 ⊢ (𝐽 ∈ Top → ∅ ∈ 𝐽) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 ⊆ wss 3170 ∅c0 3464 ∪ cuni 3855 Topctop 14539 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-sep 4169 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-dif 3172 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3622 df-sn 3643 df-uni 3856 df-top 14540 |
| This theorem is referenced by: 0ntop 14549 topgele 14571 istps 14574 topontopn 14579 tgclb 14607 en1top 14619 topcld 14651 ntr0 14676 0nei 14708 restrcl 14709 rest0 14721 mopn0 15030 |
| Copyright terms: Public domain | W3C validator |