ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0opn GIF version

Theorem 0opn 13983
Description: The empty set is an open subset of any topology. (Contributed by Stefan Allan, 27-Feb-2006.)
Assertion
Ref Expression
0opn (𝐽 ∈ Top → ∅ ∈ 𝐽)

Proof of Theorem 0opn
StepHypRef Expression
1 uni0 3851 . 2 ∅ = ∅
2 0ss 3476 . . 3 ∅ ⊆ 𝐽
3 uniopn 13978 . . 3 ((𝐽 ∈ Top ∧ ∅ ⊆ 𝐽) → ∅ ∈ 𝐽)
42, 3mpan2 425 . 2 (𝐽 ∈ Top → ∅ ∈ 𝐽)
51, 4eqeltrrid 2277 1 (𝐽 ∈ Top → ∅ ∈ 𝐽)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2160  wss 3144  c0 3437   cuni 3824  Topctop 13974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171  ax-sep 4136
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-dif 3146  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-uni 3825  df-top 13975
This theorem is referenced by:  0ntop  13984  topgele  14006  istps  14009  topontopn  14014  tgclb  14042  en1top  14054  topcld  14086  ntr0  14111  0nei  14143  restrcl  14144  rest0  14156  mopn0  14465
  Copyright terms: Public domain W3C validator