ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlem3-2d GIF version

Theorem tfrlem3-2d 6256
Description: Lemma for transfinite recursion which changes a bound variable (Contributed by Jim Kingdon, 2-Jul-2019.)
Hypothesis
Ref Expression
tfrlem3-2d.1 (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))
Assertion
Ref Expression
tfrlem3-2d (𝜑 → (Fun 𝐹 ∧ (𝐹𝑔) ∈ V))
Distinct variable group:   𝑥,𝑔,𝐹
Allowed substitution hints:   𝜑(𝑥,𝑔)

Proof of Theorem tfrlem3-2d
StepHypRef Expression
1 tfrlem3-2d.1 . . 3 (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))
2 fveq2 5467 . . . . . 6 (𝑥 = 𝑔 → (𝐹𝑥) = (𝐹𝑔))
32eleq1d 2226 . . . . 5 (𝑥 = 𝑔 → ((𝐹𝑥) ∈ V ↔ (𝐹𝑔) ∈ V))
43anbi2d 460 . . . 4 (𝑥 = 𝑔 → ((Fun 𝐹 ∧ (𝐹𝑥) ∈ V) ↔ (Fun 𝐹 ∧ (𝐹𝑔) ∈ V)))
54cbvalv 1897 . . 3 (∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V) ↔ ∀𝑔(Fun 𝐹 ∧ (𝐹𝑔) ∈ V))
61, 5sylib 121 . 2 (𝜑 → ∀𝑔(Fun 𝐹 ∧ (𝐹𝑔) ∈ V))
7619.21bi 1538 1 (𝜑 → (Fun 𝐹 ∧ (𝐹𝑔) ∈ V))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wal 1333  wcel 2128  Vcvv 2712  Fun wfun 5163  cfv 5169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-rex 2441  df-v 2714  df-un 3106  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-iota 5134  df-fv 5177
This theorem is referenced by:  tfrlemisucfn  6268  tfrlemisucaccv  6269  tfrlemibxssdm  6271  tfrlemibfn  6272  tfrlemi14d  6277
  Copyright terms: Public domain W3C validator