ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlem3-2d GIF version

Theorem tfrlem3-2d 6280
Description: Lemma for transfinite recursion which changes a bound variable (Contributed by Jim Kingdon, 2-Jul-2019.)
Hypothesis
Ref Expression
tfrlem3-2d.1 (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))
Assertion
Ref Expression
tfrlem3-2d (𝜑 → (Fun 𝐹 ∧ (𝐹𝑔) ∈ V))
Distinct variable group:   𝑥,𝑔,𝐹
Allowed substitution hints:   𝜑(𝑥,𝑔)

Proof of Theorem tfrlem3-2d
StepHypRef Expression
1 tfrlem3-2d.1 . . 3 (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))
2 fveq2 5486 . . . . . 6 (𝑥 = 𝑔 → (𝐹𝑥) = (𝐹𝑔))
32eleq1d 2235 . . . . 5 (𝑥 = 𝑔 → ((𝐹𝑥) ∈ V ↔ (𝐹𝑔) ∈ V))
43anbi2d 460 . . . 4 (𝑥 = 𝑔 → ((Fun 𝐹 ∧ (𝐹𝑥) ∈ V) ↔ (Fun 𝐹 ∧ (𝐹𝑔) ∈ V)))
54cbvalv 1905 . . 3 (∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V) ↔ ∀𝑔(Fun 𝐹 ∧ (𝐹𝑔) ∈ V))
61, 5sylib 121 . 2 (𝜑 → ∀𝑔(Fun 𝐹 ∧ (𝐹𝑔) ∈ V))
7619.21bi 1546 1 (𝜑 → (Fun 𝐹 ∧ (𝐹𝑔) ∈ V))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wal 1341  wcel 2136  Vcvv 2726  Fun wfun 5182  cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-iota 5153  df-fv 5196
This theorem is referenced by:  tfrlemisucfn  6292  tfrlemisucaccv  6293  tfrlemibxssdm  6295  tfrlemibfn  6296  tfrlemi14d  6301
  Copyright terms: Public domain W3C validator