![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > tfrlem3-2d | GIF version |
Description: Lemma for transfinite recursion which changes a bound variable (Contributed by Jim Kingdon, 2-Jul-2019.) |
Ref | Expression |
---|---|
tfrlem3-2d.1 | ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) |
Ref | Expression |
---|---|
tfrlem3-2d | ⊢ (𝜑 → (Fun 𝐹 ∧ (𝐹‘𝑔) ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfrlem3-2d.1 | . . 3 ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) | |
2 | fveq2 5554 | . . . . . 6 ⊢ (𝑥 = 𝑔 → (𝐹‘𝑥) = (𝐹‘𝑔)) | |
3 | 2 | eleq1d 2262 | . . . . 5 ⊢ (𝑥 = 𝑔 → ((𝐹‘𝑥) ∈ V ↔ (𝐹‘𝑔) ∈ V)) |
4 | 3 | anbi2d 464 | . . . 4 ⊢ (𝑥 = 𝑔 → ((Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V) ↔ (Fun 𝐹 ∧ (𝐹‘𝑔) ∈ V))) |
5 | 4 | cbvalv 1929 | . . 3 ⊢ (∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V) ↔ ∀𝑔(Fun 𝐹 ∧ (𝐹‘𝑔) ∈ V)) |
6 | 1, 5 | sylib 122 | . 2 ⊢ (𝜑 → ∀𝑔(Fun 𝐹 ∧ (𝐹‘𝑔) ∈ V)) |
7 | 6 | 19.21bi 1569 | 1 ⊢ (𝜑 → (Fun 𝐹 ∧ (𝐹‘𝑔) ∈ V)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∀wal 1362 ∈ wcel 2164 Vcvv 2760 Fun wfun 5248 ‘cfv 5254 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-v 2762 df-un 3157 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-iota 5215 df-fv 5262 |
This theorem is referenced by: tfrlemisucfn 6377 tfrlemisucaccv 6378 tfrlemibxssdm 6380 tfrlemibfn 6381 tfrlemi14d 6386 |
Copyright terms: Public domain | W3C validator |