![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > tfrlem3-2d | GIF version |
Description: Lemma for transfinite recursion which changes a bound variable (Contributed by Jim Kingdon, 2-Jul-2019.) |
Ref | Expression |
---|---|
tfrlem3-2d.1 | ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) |
Ref | Expression |
---|---|
tfrlem3-2d | ⊢ (𝜑 → (Fun 𝐹 ∧ (𝐹‘𝑔) ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfrlem3-2d.1 | . . 3 ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) | |
2 | fveq2 5517 | . . . . . 6 ⊢ (𝑥 = 𝑔 → (𝐹‘𝑥) = (𝐹‘𝑔)) | |
3 | 2 | eleq1d 2246 | . . . . 5 ⊢ (𝑥 = 𝑔 → ((𝐹‘𝑥) ∈ V ↔ (𝐹‘𝑔) ∈ V)) |
4 | 3 | anbi2d 464 | . . . 4 ⊢ (𝑥 = 𝑔 → ((Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V) ↔ (Fun 𝐹 ∧ (𝐹‘𝑔) ∈ V))) |
5 | 4 | cbvalv 1917 | . . 3 ⊢ (∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V) ↔ ∀𝑔(Fun 𝐹 ∧ (𝐹‘𝑔) ∈ V)) |
6 | 1, 5 | sylib 122 | . 2 ⊢ (𝜑 → ∀𝑔(Fun 𝐹 ∧ (𝐹‘𝑔) ∈ V)) |
7 | 6 | 19.21bi 1558 | 1 ⊢ (𝜑 → (Fun 𝐹 ∧ (𝐹‘𝑔) ∈ V)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∀wal 1351 ∈ wcel 2148 Vcvv 2739 Fun wfun 5212 ‘cfv 5218 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-rex 2461 df-v 2741 df-un 3135 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-iota 5180 df-fv 5226 |
This theorem is referenced by: tfrlemisucfn 6327 tfrlemisucaccv 6328 tfrlemibxssdm 6330 tfrlemibfn 6331 tfrlemi14d 6336 |
Copyright terms: Public domain | W3C validator |