ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlem3-2d GIF version

Theorem tfrlem3-2d 6388
Description: Lemma for transfinite recursion which changes a bound variable (Contributed by Jim Kingdon, 2-Jul-2019.)
Hypothesis
Ref Expression
tfrlem3-2d.1 (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))
Assertion
Ref Expression
tfrlem3-2d (𝜑 → (Fun 𝐹 ∧ (𝐹𝑔) ∈ V))
Distinct variable group:   𝑥,𝑔,𝐹
Allowed substitution hints:   𝜑(𝑥,𝑔)

Proof of Theorem tfrlem3-2d
StepHypRef Expression
1 tfrlem3-2d.1 . . 3 (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))
2 fveq2 5570 . . . . . 6 (𝑥 = 𝑔 → (𝐹𝑥) = (𝐹𝑔))
32eleq1d 2273 . . . . 5 (𝑥 = 𝑔 → ((𝐹𝑥) ∈ V ↔ (𝐹𝑔) ∈ V))
43anbi2d 464 . . . 4 (𝑥 = 𝑔 → ((Fun 𝐹 ∧ (𝐹𝑥) ∈ V) ↔ (Fun 𝐹 ∧ (𝐹𝑔) ∈ V)))
54cbvalv 1940 . . 3 (∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V) ↔ ∀𝑔(Fun 𝐹 ∧ (𝐹𝑔) ∈ V))
61, 5sylib 122 . 2 (𝜑 → ∀𝑔(Fun 𝐹 ∧ (𝐹𝑔) ∈ V))
7619.21bi 1580 1 (𝜑 → (Fun 𝐹 ∧ (𝐹𝑔) ∈ V))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1370  wcel 2175  Vcvv 2771  Fun wfun 5262  cfv 5268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-rex 2489  df-v 2773  df-un 3169  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-iota 5229  df-fv 5276
This theorem is referenced by:  tfrlemisucfn  6400  tfrlemisucaccv  6401  tfrlemibxssdm  6403  tfrlemibfn  6404  tfrlemi14d  6409
  Copyright terms: Public domain W3C validator