| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tfrlem3-2d | GIF version | ||
| Description: Lemma for transfinite recursion which changes a bound variable (Contributed by Jim Kingdon, 2-Jul-2019.) |
| Ref | Expression |
|---|---|
| tfrlem3-2d.1 | ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) |
| Ref | Expression |
|---|---|
| tfrlem3-2d | ⊢ (𝜑 → (Fun 𝐹 ∧ (𝐹‘𝑔) ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfrlem3-2d.1 | . . 3 ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) | |
| 2 | fveq2 5558 | . . . . . 6 ⊢ (𝑥 = 𝑔 → (𝐹‘𝑥) = (𝐹‘𝑔)) | |
| 3 | 2 | eleq1d 2265 | . . . . 5 ⊢ (𝑥 = 𝑔 → ((𝐹‘𝑥) ∈ V ↔ (𝐹‘𝑔) ∈ V)) |
| 4 | 3 | anbi2d 464 | . . . 4 ⊢ (𝑥 = 𝑔 → ((Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V) ↔ (Fun 𝐹 ∧ (𝐹‘𝑔) ∈ V))) |
| 5 | 4 | cbvalv 1932 | . . 3 ⊢ (∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V) ↔ ∀𝑔(Fun 𝐹 ∧ (𝐹‘𝑔) ∈ V)) |
| 6 | 1, 5 | sylib 122 | . 2 ⊢ (𝜑 → ∀𝑔(Fun 𝐹 ∧ (𝐹‘𝑔) ∈ V)) |
| 7 | 6 | 19.21bi 1572 | 1 ⊢ (𝜑 → (Fun 𝐹 ∧ (𝐹‘𝑔) ∈ V)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1362 ∈ wcel 2167 Vcvv 2763 Fun wfun 5252 ‘cfv 5258 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-iota 5219 df-fv 5266 |
| This theorem is referenced by: tfrlemisucfn 6382 tfrlemisucaccv 6383 tfrlemibxssdm 6385 tfrlemibfn 6386 tfrlemi14d 6391 |
| Copyright terms: Public domain | W3C validator |