ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imain GIF version

Theorem imain 5365
Description: The image of an intersection is the intersection of images. (Contributed by Paul Chapman, 11-Apr-2009.)
Assertion
Ref Expression
imain (Fun 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∩ (𝐹𝐵)))

Proof of Theorem imain
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imainlem 5364 . . 3 (𝐹 “ (𝐴𝐵)) ⊆ ((𝐹𝐴) ∩ (𝐹𝐵))
21a1i 9 . 2 (Fun 𝐹 → (𝐹 “ (𝐴𝐵)) ⊆ ((𝐹𝐴) ∩ (𝐹𝐵)))
3 eeanv 1961 . . . . . 6 (∃𝑥𝑧((𝑥𝐴𝑥𝐹𝑦) ∧ (𝑧𝐵𝑧𝐹𝑦)) ↔ (∃𝑥(𝑥𝐴𝑥𝐹𝑦) ∧ ∃𝑧(𝑧𝐵𝑧𝐹𝑦)))
4 simprll 537 . . . . . . . . . . 11 ((Fun 𝐹 ∧ ((𝑥𝐴𝑥𝐹𝑦) ∧ (𝑧𝐵𝑧𝐹𝑦))) → 𝑥𝐴)
5 simpr 110 . . . . . . . . . . . . . 14 ((𝑥𝐴𝑥𝐹𝑦) → 𝑥𝐹𝑦)
6 simpr 110 . . . . . . . . . . . . . 14 ((𝑧𝐵𝑧𝐹𝑦) → 𝑧𝐹𝑦)
75, 6anim12i 338 . . . . . . . . . . . . 13 (((𝑥𝐴𝑥𝐹𝑦) ∧ (𝑧𝐵𝑧𝐹𝑦)) → (𝑥𝐹𝑦𝑧𝐹𝑦))
8 funcnveq 5346 . . . . . . . . . . . . . . . . 17 (Fun 𝐹 ↔ ∀𝑥𝑦𝑧((𝑥𝐹𝑦𝑧𝐹𝑦) → 𝑥 = 𝑧))
98biimpi 120 . . . . . . . . . . . . . . . 16 (Fun 𝐹 → ∀𝑥𝑦𝑧((𝑥𝐹𝑦𝑧𝐹𝑦) → 𝑥 = 𝑧))
10919.21bi 1582 . . . . . . . . . . . . . . 15 (Fun 𝐹 → ∀𝑦𝑧((𝑥𝐹𝑦𝑧𝐹𝑦) → 𝑥 = 𝑧))
111019.21bbi 1583 . . . . . . . . . . . . . 14 (Fun 𝐹 → ((𝑥𝐹𝑦𝑧𝐹𝑦) → 𝑥 = 𝑧))
1211imp 124 . . . . . . . . . . . . 13 ((Fun 𝐹 ∧ (𝑥𝐹𝑦𝑧𝐹𝑦)) → 𝑥 = 𝑧)
137, 12sylan2 286 . . . . . . . . . . . 12 ((Fun 𝐹 ∧ ((𝑥𝐴𝑥𝐹𝑦) ∧ (𝑧𝐵𝑧𝐹𝑦))) → 𝑥 = 𝑧)
14 simprrl 539 . . . . . . . . . . . 12 ((Fun 𝐹 ∧ ((𝑥𝐴𝑥𝐹𝑦) ∧ (𝑧𝐵𝑧𝐹𝑦))) → 𝑧𝐵)
1513, 14eqeltrd 2283 . . . . . . . . . . 11 ((Fun 𝐹 ∧ ((𝑥𝐴𝑥𝐹𝑦) ∧ (𝑧𝐵𝑧𝐹𝑦))) → 𝑥𝐵)
16 elin 3360 . . . . . . . . . . 11 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
174, 15, 16sylanbrc 417 . . . . . . . . . 10 ((Fun 𝐹 ∧ ((𝑥𝐴𝑥𝐹𝑦) ∧ (𝑧𝐵𝑧𝐹𝑦))) → 𝑥 ∈ (𝐴𝐵))
18 simprlr 538 . . . . . . . . . 10 ((Fun 𝐹 ∧ ((𝑥𝐴𝑥𝐹𝑦) ∧ (𝑧𝐵𝑧𝐹𝑦))) → 𝑥𝐹𝑦)
1917, 18jca 306 . . . . . . . . 9 ((Fun 𝐹 ∧ ((𝑥𝐴𝑥𝐹𝑦) ∧ (𝑧𝐵𝑧𝐹𝑦))) → (𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐹𝑦))
2019ex 115 . . . . . . . 8 (Fun 𝐹 → (((𝑥𝐴𝑥𝐹𝑦) ∧ (𝑧𝐵𝑧𝐹𝑦)) → (𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐹𝑦)))
2120exlimdv 1843 . . . . . . 7 (Fun 𝐹 → (∃𝑧((𝑥𝐴𝑥𝐹𝑦) ∧ (𝑧𝐵𝑧𝐹𝑦)) → (𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐹𝑦)))
2221eximdv 1904 . . . . . 6 (Fun 𝐹 → (∃𝑥𝑧((𝑥𝐴𝑥𝐹𝑦) ∧ (𝑧𝐵𝑧𝐹𝑦)) → ∃𝑥(𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐹𝑦)))
233, 22biimtrrid 153 . . . . 5 (Fun 𝐹 → ((∃𝑥(𝑥𝐴𝑥𝐹𝑦) ∧ ∃𝑧(𝑧𝐵𝑧𝐹𝑦)) → ∃𝑥(𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐹𝑦)))
24 df-rex 2491 . . . . . 6 (∃𝑥𝐴 𝑥𝐹𝑦 ↔ ∃𝑥(𝑥𝐴𝑥𝐹𝑦))
25 df-rex 2491 . . . . . 6 (∃𝑧𝐵 𝑧𝐹𝑦 ↔ ∃𝑧(𝑧𝐵𝑧𝐹𝑦))
2624, 25anbi12i 460 . . . . 5 ((∃𝑥𝐴 𝑥𝐹𝑦 ∧ ∃𝑧𝐵 𝑧𝐹𝑦) ↔ (∃𝑥(𝑥𝐴𝑥𝐹𝑦) ∧ ∃𝑧(𝑧𝐵𝑧𝐹𝑦)))
27 df-rex 2491 . . . . 5 (∃𝑥 ∈ (𝐴𝐵)𝑥𝐹𝑦 ↔ ∃𝑥(𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐹𝑦))
2823, 26, 273imtr4g 205 . . . 4 (Fun 𝐹 → ((∃𝑥𝐴 𝑥𝐹𝑦 ∧ ∃𝑧𝐵 𝑧𝐹𝑦) → ∃𝑥 ∈ (𝐴𝐵)𝑥𝐹𝑦))
2928ss2abdv 3270 . . 3 (Fun 𝐹 → {𝑦 ∣ (∃𝑥𝐴 𝑥𝐹𝑦 ∧ ∃𝑧𝐵 𝑧𝐹𝑦)} ⊆ {𝑦 ∣ ∃𝑥 ∈ (𝐴𝐵)𝑥𝐹𝑦})
30 dfima2 5033 . . . . 5 (𝐹𝐴) = {𝑦 ∣ ∃𝑥𝐴 𝑥𝐹𝑦}
31 dfima2 5033 . . . . 5 (𝐹𝐵) = {𝑦 ∣ ∃𝑧𝐵 𝑧𝐹𝑦}
3230, 31ineq12i 3376 . . . 4 ((𝐹𝐴) ∩ (𝐹𝐵)) = ({𝑦 ∣ ∃𝑥𝐴 𝑥𝐹𝑦} ∩ {𝑦 ∣ ∃𝑧𝐵 𝑧𝐹𝑦})
33 inab 3445 . . . 4 ({𝑦 ∣ ∃𝑥𝐴 𝑥𝐹𝑦} ∩ {𝑦 ∣ ∃𝑧𝐵 𝑧𝐹𝑦}) = {𝑦 ∣ (∃𝑥𝐴 𝑥𝐹𝑦 ∧ ∃𝑧𝐵 𝑧𝐹𝑦)}
3432, 33eqtri 2227 . . 3 ((𝐹𝐴) ∩ (𝐹𝐵)) = {𝑦 ∣ (∃𝑥𝐴 𝑥𝐹𝑦 ∧ ∃𝑧𝐵 𝑧𝐹𝑦)}
35 dfima2 5033 . . 3 (𝐹 “ (𝐴𝐵)) = {𝑦 ∣ ∃𝑥 ∈ (𝐴𝐵)𝑥𝐹𝑦}
3629, 34, 353sstr4g 3240 . 2 (Fun 𝐹 → ((𝐹𝐴) ∩ (𝐹𝐵)) ⊆ (𝐹 “ (𝐴𝐵)))
372, 36eqssd 3214 1 (Fun 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∩ (𝐹𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1371   = wceq 1373  wex 1516  wcel 2177  {cab 2192  wrex 2486  cin 3169  wss 3170   class class class wbr 4051  ccnv 4682  cima 4686  Fun wfun 5274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-br 4052  df-opab 4114  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-fun 5282
This theorem is referenced by:  inpreima  5719
  Copyright terms: Public domain W3C validator