| Step | Hyp | Ref
| Expression |
| 1 | | tfrfun 6387 |
. . . 4
⊢ Fun
recs(𝐺) |
| 2 | | tfri1dALT.1 |
. . . . 5
⊢ 𝐹 = recs(𝐺) |
| 3 | 2 | funeqi 5280 |
. . . 4
⊢ (Fun
𝐹 ↔ Fun recs(𝐺)) |
| 4 | 1, 3 | mpbir 146 |
. . 3
⊢ Fun 𝐹 |
| 5 | 4 | a1i 9 |
. 2
⊢ (𝜑 → Fun 𝐹) |
| 6 | | eqid 2196 |
. . . . . 6
⊢ {𝑎 ∣ ∃𝑏 ∈ On (𝑎 Fn 𝑏 ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐺‘(𝑎 ↾ 𝑐)))} = {𝑎 ∣ ∃𝑏 ∈ On (𝑎 Fn 𝑏 ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐺‘(𝑎 ↾ 𝑐)))} |
| 7 | 6 | tfrlem8 6385 |
. . . . 5
⊢ Ord dom
recs(𝐺) |
| 8 | 2 | dmeqi 4868 |
. . . . . 6
⊢ dom 𝐹 = dom recs(𝐺) |
| 9 | | ordeq 4408 |
. . . . . 6
⊢ (dom
𝐹 = dom recs(𝐺) → (Ord dom 𝐹 ↔ Ord dom recs(𝐺))) |
| 10 | 8, 9 | ax-mp 5 |
. . . . 5
⊢ (Ord dom
𝐹 ↔ Ord dom recs(𝐺)) |
| 11 | 7, 10 | mpbir 146 |
. . . 4
⊢ Ord dom
𝐹 |
| 12 | | ordsson 4529 |
. . . 4
⊢ (Ord dom
𝐹 → dom 𝐹 ⊆ On) |
| 13 | 11, 12 | mp1i 10 |
. . 3
⊢ (𝜑 → dom 𝐹 ⊆ On) |
| 14 | | tfri1dALT.2 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑥(Fun 𝐺 ∧ (𝐺‘𝑥) ∈ V)) |
| 15 | | simpl 109 |
. . . . . . . . . . 11
⊢ ((Fun
𝐺 ∧ (𝐺‘𝑥) ∈ V) → Fun 𝐺) |
| 16 | 15 | alimi 1469 |
. . . . . . . . . 10
⊢
(∀𝑥(Fun 𝐺 ∧ (𝐺‘𝑥) ∈ V) → ∀𝑥Fun 𝐺) |
| 17 | 14, 16 | syl 14 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑥Fun 𝐺) |
| 18 | 17 | 19.21bi 1572 |
. . . . . . . 8
⊢ (𝜑 → Fun 𝐺) |
| 19 | 18 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ On) → Fun 𝐺) |
| 20 | | ordon 4523 |
. . . . . . . 8
⊢ Ord
On |
| 21 | 20 | a1i 9 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ On) → Ord On) |
| 22 | | simpr 110 |
. . . . . . . . . . 11
⊢ ((Fun
𝐺 ∧ (𝐺‘𝑥) ∈ V) → (𝐺‘𝑥) ∈ V) |
| 23 | 22 | alimi 1469 |
. . . . . . . . . 10
⊢
(∀𝑥(Fun 𝐺 ∧ (𝐺‘𝑥) ∈ V) → ∀𝑥(𝐺‘𝑥) ∈ V) |
| 24 | | fveq2 5561 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑓 → (𝐺‘𝑥) = (𝐺‘𝑓)) |
| 25 | 24 | eleq1d 2265 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑓 → ((𝐺‘𝑥) ∈ V ↔ (𝐺‘𝑓) ∈ V)) |
| 26 | 25 | spv 1874 |
. . . . . . . . . 10
⊢
(∀𝑥(𝐺‘𝑥) ∈ V → (𝐺‘𝑓) ∈ V) |
| 27 | 14, 23, 26 | 3syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝐺‘𝑓) ∈ V) |
| 28 | 27 | adantr 276 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ On) → (𝐺‘𝑓) ∈ V) |
| 29 | 28 | 3ad2ant1 1020 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓 Fn 𝑦) → (𝐺‘𝑓) ∈ V) |
| 30 | | onsuc 4538 |
. . . . . . . . 9
⊢ (𝑦 ∈ On → suc 𝑦 ∈ On) |
| 31 | | unon 4548 |
. . . . . . . . 9
⊢ ∪ On = On |
| 32 | 30, 31 | eleq2s 2291 |
. . . . . . . 8
⊢ (𝑦 ∈ ∪ On → suc 𝑦 ∈ On) |
| 33 | 32 | adantl 277 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ On) ∧ 𝑦 ∈ ∪ On)
→ suc 𝑦 ∈
On) |
| 34 | | onsuc 4538 |
. . . . . . . 8
⊢ (𝑧 ∈ On → suc 𝑧 ∈ On) |
| 35 | 34 | adantl 277 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ On) → suc 𝑧 ∈ On) |
| 36 | 2, 19, 21, 29, 33, 35 | tfr1on 6417 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ On) → suc 𝑧 ⊆ dom 𝐹) |
| 37 | | vex 2766 |
. . . . . . 7
⊢ 𝑧 ∈ V |
| 38 | 37 | sucid 4453 |
. . . . . 6
⊢ 𝑧 ∈ suc 𝑧 |
| 39 | | ssel2 3179 |
. . . . . 6
⊢ ((suc
𝑧 ⊆ dom 𝐹 ∧ 𝑧 ∈ suc 𝑧) → 𝑧 ∈ dom 𝐹) |
| 40 | 36, 38, 39 | sylancl 413 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ On) → 𝑧 ∈ dom 𝐹) |
| 41 | 40 | ex 115 |
. . . 4
⊢ (𝜑 → (𝑧 ∈ On → 𝑧 ∈ dom 𝐹)) |
| 42 | 41 | ssrdv 3190 |
. . 3
⊢ (𝜑 → On ⊆ dom 𝐹) |
| 43 | 13, 42 | eqssd 3201 |
. 2
⊢ (𝜑 → dom 𝐹 = On) |
| 44 | | df-fn 5262 |
. 2
⊢ (𝐹 Fn On ↔ (Fun 𝐹 ∧ dom 𝐹 = On)) |
| 45 | 5, 43, 44 | sylanbrc 417 |
1
⊢ (𝜑 → 𝐹 Fn On) |