ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfri1dALT GIF version

Theorem tfri1dALT 6418
Description: Alternate proof of tfri1d 6402 in terms of tfr1on 6417.

Although this does show that the tfr1on 6417 proof is general enough to also prove tfri1d 6402, the tfri1d 6402 proof is simpler in places because it does not need to deal with 𝑋 being any ordinal. For that reason, we have both proofs. (Proof modification is discouraged.) (New usage is discouraged.) (Contributed by Jim Kingdon, 20-Mar-2022.)

Hypotheses
Ref Expression
tfri1dALT.1 𝐹 = recs(𝐺)
tfri1dALT.2 (𝜑 → ∀𝑥(Fun 𝐺 ∧ (𝐺𝑥) ∈ V))
Assertion
Ref Expression
tfri1dALT (𝜑𝐹 Fn On)
Distinct variable group:   𝑥,𝐺
Allowed substitution hints:   𝜑(𝑥)   𝐹(𝑥)

Proof of Theorem tfri1dALT
Dummy variables 𝑧 𝑎 𝑏 𝑐 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrfun 6387 . . . 4 Fun recs(𝐺)
2 tfri1dALT.1 . . . . 5 𝐹 = recs(𝐺)
32funeqi 5280 . . . 4 (Fun 𝐹 ↔ Fun recs(𝐺))
41, 3mpbir 146 . . 3 Fun 𝐹
54a1i 9 . 2 (𝜑 → Fun 𝐹)
6 eqid 2196 . . . . . 6 {𝑎 ∣ ∃𝑏 ∈ On (𝑎 Fn 𝑏 ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝐺‘(𝑎𝑐)))} = {𝑎 ∣ ∃𝑏 ∈ On (𝑎 Fn 𝑏 ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝐺‘(𝑎𝑐)))}
76tfrlem8 6385 . . . . 5 Ord dom recs(𝐺)
82dmeqi 4868 . . . . . 6 dom 𝐹 = dom recs(𝐺)
9 ordeq 4408 . . . . . 6 (dom 𝐹 = dom recs(𝐺) → (Ord dom 𝐹 ↔ Ord dom recs(𝐺)))
108, 9ax-mp 5 . . . . 5 (Ord dom 𝐹 ↔ Ord dom recs(𝐺))
117, 10mpbir 146 . . . 4 Ord dom 𝐹
12 ordsson 4529 . . . 4 (Ord dom 𝐹 → dom 𝐹 ⊆ On)
1311, 12mp1i 10 . . 3 (𝜑 → dom 𝐹 ⊆ On)
14 tfri1dALT.2 . . . . . . . . . 10 (𝜑 → ∀𝑥(Fun 𝐺 ∧ (𝐺𝑥) ∈ V))
15 simpl 109 . . . . . . . . . . 11 ((Fun 𝐺 ∧ (𝐺𝑥) ∈ V) → Fun 𝐺)
1615alimi 1469 . . . . . . . . . 10 (∀𝑥(Fun 𝐺 ∧ (𝐺𝑥) ∈ V) → ∀𝑥Fun 𝐺)
1714, 16syl 14 . . . . . . . . 9 (𝜑 → ∀𝑥Fun 𝐺)
181719.21bi 1572 . . . . . . . 8 (𝜑 → Fun 𝐺)
1918adantr 276 . . . . . . 7 ((𝜑𝑧 ∈ On) → Fun 𝐺)
20 ordon 4523 . . . . . . . 8 Ord On
2120a1i 9 . . . . . . 7 ((𝜑𝑧 ∈ On) → Ord On)
22 simpr 110 . . . . . . . . . . 11 ((Fun 𝐺 ∧ (𝐺𝑥) ∈ V) → (𝐺𝑥) ∈ V)
2322alimi 1469 . . . . . . . . . 10 (∀𝑥(Fun 𝐺 ∧ (𝐺𝑥) ∈ V) → ∀𝑥(𝐺𝑥) ∈ V)
24 fveq2 5561 . . . . . . . . . . . 12 (𝑥 = 𝑓 → (𝐺𝑥) = (𝐺𝑓))
2524eleq1d 2265 . . . . . . . . . . 11 (𝑥 = 𝑓 → ((𝐺𝑥) ∈ V ↔ (𝐺𝑓) ∈ V))
2625spv 1874 . . . . . . . . . 10 (∀𝑥(𝐺𝑥) ∈ V → (𝐺𝑓) ∈ V)
2714, 23, 263syl 17 . . . . . . . . 9 (𝜑 → (𝐺𝑓) ∈ V)
2827adantr 276 . . . . . . . 8 ((𝜑𝑧 ∈ On) → (𝐺𝑓) ∈ V)
29283ad2ant1 1020 . . . . . . 7 (((𝜑𝑧 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓 Fn 𝑦) → (𝐺𝑓) ∈ V)
30 onsuc 4538 . . . . . . . . 9 (𝑦 ∈ On → suc 𝑦 ∈ On)
31 unon 4548 . . . . . . . . 9 On = On
3230, 31eleq2s 2291 . . . . . . . 8 (𝑦 On → suc 𝑦 ∈ On)
3332adantl 277 . . . . . . 7 (((𝜑𝑧 ∈ On) ∧ 𝑦 On) → suc 𝑦 ∈ On)
34 onsuc 4538 . . . . . . . 8 (𝑧 ∈ On → suc 𝑧 ∈ On)
3534adantl 277 . . . . . . 7 ((𝜑𝑧 ∈ On) → suc 𝑧 ∈ On)
362, 19, 21, 29, 33, 35tfr1on 6417 . . . . . 6 ((𝜑𝑧 ∈ On) → suc 𝑧 ⊆ dom 𝐹)
37 vex 2766 . . . . . . 7 𝑧 ∈ V
3837sucid 4453 . . . . . 6 𝑧 ∈ suc 𝑧
39 ssel2 3179 . . . . . 6 ((suc 𝑧 ⊆ dom 𝐹𝑧 ∈ suc 𝑧) → 𝑧 ∈ dom 𝐹)
4036, 38, 39sylancl 413 . . . . 5 ((𝜑𝑧 ∈ On) → 𝑧 ∈ dom 𝐹)
4140ex 115 . . . 4 (𝜑 → (𝑧 ∈ On → 𝑧 ∈ dom 𝐹))
4241ssrdv 3190 . . 3 (𝜑 → On ⊆ dom 𝐹)
4313, 42eqssd 3201 . 2 (𝜑 → dom 𝐹 = On)
44 df-fn 5262 . 2 (𝐹 Fn On ↔ (Fun 𝐹 ∧ dom 𝐹 = On))
455, 43, 44sylanbrc 417 1 (𝜑𝐹 Fn On)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1362   = wceq 1364  wcel 2167  {cab 2182  wral 2475  wrex 2476  Vcvv 2763  wss 3157   cuni 3840  Ord word 4398  Oncon0 4399  suc csuc 4401  dom cdm 4664  cres 4666  Fun wfun 5253   Fn wfn 5254  cfv 5259  recscrecs 6371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-suc 4407  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-recs 6372
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator