ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfri1dALT GIF version

Theorem tfri1dALT 6241
Description: Alternate proof of tfri1d 6225 in terms of tfr1on 6240.

Although this does show that the tfr1on 6240 proof is general enough to also prove tfri1d 6225, the tfri1d 6225 proof is simpler in places because it does not need to deal with 𝑋 being any ordinal. For that reason, we have both proofs. (Proof modification is discouraged.) (New usage is discouraged.) (Contributed by Jim Kingdon, 20-Mar-2022.)

Hypotheses
Ref Expression
tfri1dALT.1 𝐹 = recs(𝐺)
tfri1dALT.2 (𝜑 → ∀𝑥(Fun 𝐺 ∧ (𝐺𝑥) ∈ V))
Assertion
Ref Expression
tfri1dALT (𝜑𝐹 Fn On)
Distinct variable group:   𝑥,𝐺
Allowed substitution hints:   𝜑(𝑥)   𝐹(𝑥)

Proof of Theorem tfri1dALT
Dummy variables 𝑧 𝑎 𝑏 𝑐 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrfun 6210 . . . 4 Fun recs(𝐺)
2 tfri1dALT.1 . . . . 5 𝐹 = recs(𝐺)
32funeqi 5139 . . . 4 (Fun 𝐹 ↔ Fun recs(𝐺))
41, 3mpbir 145 . . 3 Fun 𝐹
54a1i 9 . 2 (𝜑 → Fun 𝐹)
6 eqid 2137 . . . . . 6 {𝑎 ∣ ∃𝑏 ∈ On (𝑎 Fn 𝑏 ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝐺‘(𝑎𝑐)))} = {𝑎 ∣ ∃𝑏 ∈ On (𝑎 Fn 𝑏 ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝐺‘(𝑎𝑐)))}
76tfrlem8 6208 . . . . 5 Ord dom recs(𝐺)
82dmeqi 4735 . . . . . 6 dom 𝐹 = dom recs(𝐺)
9 ordeq 4289 . . . . . 6 (dom 𝐹 = dom recs(𝐺) → (Ord dom 𝐹 ↔ Ord dom recs(𝐺)))
108, 9ax-mp 5 . . . . 5 (Ord dom 𝐹 ↔ Ord dom recs(𝐺))
117, 10mpbir 145 . . . 4 Ord dom 𝐹
12 ordsson 4403 . . . 4 (Ord dom 𝐹 → dom 𝐹 ⊆ On)
1311, 12mp1i 10 . . 3 (𝜑 → dom 𝐹 ⊆ On)
14 tfri1dALT.2 . . . . . . . . . 10 (𝜑 → ∀𝑥(Fun 𝐺 ∧ (𝐺𝑥) ∈ V))
15 simpl 108 . . . . . . . . . . 11 ((Fun 𝐺 ∧ (𝐺𝑥) ∈ V) → Fun 𝐺)
1615alimi 1431 . . . . . . . . . 10 (∀𝑥(Fun 𝐺 ∧ (𝐺𝑥) ∈ V) → ∀𝑥Fun 𝐺)
1714, 16syl 14 . . . . . . . . 9 (𝜑 → ∀𝑥Fun 𝐺)
181719.21bi 1537 . . . . . . . 8 (𝜑 → Fun 𝐺)
1918adantr 274 . . . . . . 7 ((𝜑𝑧 ∈ On) → Fun 𝐺)
20 ordon 4397 . . . . . . . 8 Ord On
2120a1i 9 . . . . . . 7 ((𝜑𝑧 ∈ On) → Ord On)
22 simpr 109 . . . . . . . . . . 11 ((Fun 𝐺 ∧ (𝐺𝑥) ∈ V) → (𝐺𝑥) ∈ V)
2322alimi 1431 . . . . . . . . . 10 (∀𝑥(Fun 𝐺 ∧ (𝐺𝑥) ∈ V) → ∀𝑥(𝐺𝑥) ∈ V)
24 fveq2 5414 . . . . . . . . . . . 12 (𝑥 = 𝑓 → (𝐺𝑥) = (𝐺𝑓))
2524eleq1d 2206 . . . . . . . . . . 11 (𝑥 = 𝑓 → ((𝐺𝑥) ∈ V ↔ (𝐺𝑓) ∈ V))
2625spv 1832 . . . . . . . . . 10 (∀𝑥(𝐺𝑥) ∈ V → (𝐺𝑓) ∈ V)
2714, 23, 263syl 17 . . . . . . . . 9 (𝜑 → (𝐺𝑓) ∈ V)
2827adantr 274 . . . . . . . 8 ((𝜑𝑧 ∈ On) → (𝐺𝑓) ∈ V)
29283ad2ant1 1002 . . . . . . 7 (((𝜑𝑧 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓 Fn 𝑦) → (𝐺𝑓) ∈ V)
30 suceloni 4412 . . . . . . . . 9 (𝑦 ∈ On → suc 𝑦 ∈ On)
31 unon 4422 . . . . . . . . 9 On = On
3230, 31eleq2s 2232 . . . . . . . 8 (𝑦 On → suc 𝑦 ∈ On)
3332adantl 275 . . . . . . 7 (((𝜑𝑧 ∈ On) ∧ 𝑦 On) → suc 𝑦 ∈ On)
34 suceloni 4412 . . . . . . . 8 (𝑧 ∈ On → suc 𝑧 ∈ On)
3534adantl 275 . . . . . . 7 ((𝜑𝑧 ∈ On) → suc 𝑧 ∈ On)
362, 19, 21, 29, 33, 35tfr1on 6240 . . . . . 6 ((𝜑𝑧 ∈ On) → suc 𝑧 ⊆ dom 𝐹)
37 vex 2684 . . . . . . 7 𝑧 ∈ V
3837sucid 4334 . . . . . 6 𝑧 ∈ suc 𝑧
39 ssel2 3087 . . . . . 6 ((suc 𝑧 ⊆ dom 𝐹𝑧 ∈ suc 𝑧) → 𝑧 ∈ dom 𝐹)
4036, 38, 39sylancl 409 . . . . 5 ((𝜑𝑧 ∈ On) → 𝑧 ∈ dom 𝐹)
4140ex 114 . . . 4 (𝜑 → (𝑧 ∈ On → 𝑧 ∈ dom 𝐹))
4241ssrdv 3098 . . 3 (𝜑 → On ⊆ dom 𝐹)
4313, 42eqssd 3109 . 2 (𝜑 → dom 𝐹 = On)
44 df-fn 5121 . 2 (𝐹 Fn On ↔ (Fun 𝐹 ∧ dom 𝐹 = On))
455, 43, 44sylanbrc 413 1 (𝜑𝐹 Fn On)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1329   = wceq 1331  wcel 1480  {cab 2123  wral 2414  wrex 2415  Vcvv 2681  wss 3066   cuni 3731  Ord word 4279  Oncon0 4280  suc csuc 4282  dom cdm 4534  cres 4536  Fun wfun 5112   Fn wfn 5113  cfv 5118  recscrecs 6194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-iord 4283  df-on 4285  df-suc 4288  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-recs 6195
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator