| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > intasym | GIF version | ||
| Description: Two ways of saying a relation is antisymmetric. Definition of antisymmetry in [Schechter] p. 51. (Contributed by NM, 9-Sep-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) | 
| Ref | Expression | 
|---|---|
| intasym | ⊢ ((𝑅 ∩ ◡𝑅) ⊆ I ↔ ∀𝑥∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | relcnv 5047 | . . 3 ⊢ Rel ◡𝑅 | |
| 2 | relin2 4782 | . . 3 ⊢ (Rel ◡𝑅 → Rel (𝑅 ∩ ◡𝑅)) | |
| 3 | ssrel 4751 | . . 3 ⊢ (Rel (𝑅 ∩ ◡𝑅) → ((𝑅 ∩ ◡𝑅) ⊆ I ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ (𝑅 ∩ ◡𝑅) → 〈𝑥, 𝑦〉 ∈ I ))) | |
| 4 | 1, 2, 3 | mp2b 8 | . 2 ⊢ ((𝑅 ∩ ◡𝑅) ⊆ I ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ (𝑅 ∩ ◡𝑅) → 〈𝑥, 𝑦〉 ∈ I )) | 
| 5 | elin 3346 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ (𝑅 ∩ ◡𝑅) ↔ (〈𝑥, 𝑦〉 ∈ 𝑅 ∧ 〈𝑥, 𝑦〉 ∈ ◡𝑅)) | |
| 6 | df-br 4034 | . . . . . 6 ⊢ (𝑥𝑅𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅) | |
| 7 | vex 2766 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
| 8 | vex 2766 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
| 9 | 7, 8 | brcnv 4849 | . . . . . . 7 ⊢ (𝑥◡𝑅𝑦 ↔ 𝑦𝑅𝑥) | 
| 10 | df-br 4034 | . . . . . . 7 ⊢ (𝑥◡𝑅𝑦 ↔ 〈𝑥, 𝑦〉 ∈ ◡𝑅) | |
| 11 | 9, 10 | bitr3i 186 | . . . . . 6 ⊢ (𝑦𝑅𝑥 ↔ 〈𝑥, 𝑦〉 ∈ ◡𝑅) | 
| 12 | 6, 11 | anbi12i 460 | . . . . 5 ⊢ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) ↔ (〈𝑥, 𝑦〉 ∈ 𝑅 ∧ 〈𝑥, 𝑦〉 ∈ ◡𝑅)) | 
| 13 | 5, 12 | bitr4i 187 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ (𝑅 ∩ ◡𝑅) ↔ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥)) | 
| 14 | df-br 4034 | . . . . 5 ⊢ (𝑥 I 𝑦 ↔ 〈𝑥, 𝑦〉 ∈ I ) | |
| 15 | 8 | ideq 4818 | . . . . 5 ⊢ (𝑥 I 𝑦 ↔ 𝑥 = 𝑦) | 
| 16 | 14, 15 | bitr3i 186 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ I ↔ 𝑥 = 𝑦) | 
| 17 | 13, 16 | imbi12i 239 | . . 3 ⊢ ((〈𝑥, 𝑦〉 ∈ (𝑅 ∩ ◡𝑅) → 〈𝑥, 𝑦〉 ∈ I ) ↔ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦)) | 
| 18 | 17 | 2albii 1485 | . 2 ⊢ (∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ (𝑅 ∩ ◡𝑅) → 〈𝑥, 𝑦〉 ∈ I ) ↔ ∀𝑥∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦)) | 
| 19 | 4, 18 | bitri 184 | 1 ⊢ ((𝑅 ∩ ◡𝑅) ⊆ I ↔ ∀𝑥∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1362 ∈ wcel 2167 ∩ cin 3156 ⊆ wss 3157 〈cop 3625 class class class wbr 4033 I cid 4323 ◡ccnv 4662 Rel wrel 4668 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |