![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > intasym | GIF version |
Description: Two ways of saying a relation is antisymmetric. Definition of antisymmetry in [Schechter] p. 51. (Contributed by NM, 9-Sep-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
intasym | ⊢ ((𝑅 ∩ ◡𝑅) ⊆ I ↔ ∀𝑥∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 5008 | . . 3 ⊢ Rel ◡𝑅 | |
2 | relin2 4747 | . . 3 ⊢ (Rel ◡𝑅 → Rel (𝑅 ∩ ◡𝑅)) | |
3 | ssrel 4716 | . . 3 ⊢ (Rel (𝑅 ∩ ◡𝑅) → ((𝑅 ∩ ◡𝑅) ⊆ I ↔ ∀𝑥∀𝑦(⟨𝑥, 𝑦⟩ ∈ (𝑅 ∩ ◡𝑅) → ⟨𝑥, 𝑦⟩ ∈ I ))) | |
4 | 1, 2, 3 | mp2b 8 | . 2 ⊢ ((𝑅 ∩ ◡𝑅) ⊆ I ↔ ∀𝑥∀𝑦(⟨𝑥, 𝑦⟩ ∈ (𝑅 ∩ ◡𝑅) → ⟨𝑥, 𝑦⟩ ∈ I )) |
5 | elin 3320 | . . . . 5 ⊢ (⟨𝑥, 𝑦⟩ ∈ (𝑅 ∩ ◡𝑅) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝑅 ∧ ⟨𝑥, 𝑦⟩ ∈ ◡𝑅)) | |
6 | df-br 4006 | . . . . . 6 ⊢ (𝑥𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅) | |
7 | vex 2742 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
8 | vex 2742 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
9 | 7, 8 | brcnv 4812 | . . . . . . 7 ⊢ (𝑥◡𝑅𝑦 ↔ 𝑦𝑅𝑥) |
10 | df-br 4006 | . . . . . . 7 ⊢ (𝑥◡𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ ◡𝑅) | |
11 | 9, 10 | bitr3i 186 | . . . . . 6 ⊢ (𝑦𝑅𝑥 ↔ ⟨𝑥, 𝑦⟩ ∈ ◡𝑅) |
12 | 6, 11 | anbi12i 460 | . . . . 5 ⊢ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝑅 ∧ ⟨𝑥, 𝑦⟩ ∈ ◡𝑅)) |
13 | 5, 12 | bitr4i 187 | . . . 4 ⊢ (⟨𝑥, 𝑦⟩ ∈ (𝑅 ∩ ◡𝑅) ↔ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥)) |
14 | df-br 4006 | . . . . 5 ⊢ (𝑥 I 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ I ) | |
15 | 8 | ideq 4781 | . . . . 5 ⊢ (𝑥 I 𝑦 ↔ 𝑥 = 𝑦) |
16 | 14, 15 | bitr3i 186 | . . . 4 ⊢ (⟨𝑥, 𝑦⟩ ∈ I ↔ 𝑥 = 𝑦) |
17 | 13, 16 | imbi12i 239 | . . 3 ⊢ ((⟨𝑥, 𝑦⟩ ∈ (𝑅 ∩ ◡𝑅) → ⟨𝑥, 𝑦⟩ ∈ I ) ↔ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦)) |
18 | 17 | 2albii 1471 | . 2 ⊢ (∀𝑥∀𝑦(⟨𝑥, 𝑦⟩ ∈ (𝑅 ∩ ◡𝑅) → ⟨𝑥, 𝑦⟩ ∈ I ) ↔ ∀𝑥∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦)) |
19 | 4, 18 | bitri 184 | 1 ⊢ ((𝑅 ∩ ◡𝑅) ⊆ I ↔ ∀𝑥∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1351 ∈ wcel 2148 ∩ cin 3130 ⊆ wss 3131 ⟨cop 3597 class class class wbr 4005 I cid 4290 ◡ccnv 4627 Rel wrel 4633 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-br 4006 df-opab 4067 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |