![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > intasym | GIF version |
Description: Two ways of saying a relation is antisymmetric. Definition of antisymmetry in [Schechter] p. 51. (Contributed by NM, 9-Sep-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
intasym | ⊢ ((𝑅 ∩ ◡𝑅) ⊆ I ↔ ∀𝑥∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 5044 | . . 3 ⊢ Rel ◡𝑅 | |
2 | relin2 4779 | . . 3 ⊢ (Rel ◡𝑅 → Rel (𝑅 ∩ ◡𝑅)) | |
3 | ssrel 4748 | . . 3 ⊢ (Rel (𝑅 ∩ ◡𝑅) → ((𝑅 ∩ ◡𝑅) ⊆ I ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ (𝑅 ∩ ◡𝑅) → 〈𝑥, 𝑦〉 ∈ I ))) | |
4 | 1, 2, 3 | mp2b 8 | . 2 ⊢ ((𝑅 ∩ ◡𝑅) ⊆ I ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ (𝑅 ∩ ◡𝑅) → 〈𝑥, 𝑦〉 ∈ I )) |
5 | elin 3343 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ (𝑅 ∩ ◡𝑅) ↔ (〈𝑥, 𝑦〉 ∈ 𝑅 ∧ 〈𝑥, 𝑦〉 ∈ ◡𝑅)) | |
6 | df-br 4031 | . . . . . 6 ⊢ (𝑥𝑅𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅) | |
7 | vex 2763 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
8 | vex 2763 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
9 | 7, 8 | brcnv 4846 | . . . . . . 7 ⊢ (𝑥◡𝑅𝑦 ↔ 𝑦𝑅𝑥) |
10 | df-br 4031 | . . . . . . 7 ⊢ (𝑥◡𝑅𝑦 ↔ 〈𝑥, 𝑦〉 ∈ ◡𝑅) | |
11 | 9, 10 | bitr3i 186 | . . . . . 6 ⊢ (𝑦𝑅𝑥 ↔ 〈𝑥, 𝑦〉 ∈ ◡𝑅) |
12 | 6, 11 | anbi12i 460 | . . . . 5 ⊢ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) ↔ (〈𝑥, 𝑦〉 ∈ 𝑅 ∧ 〈𝑥, 𝑦〉 ∈ ◡𝑅)) |
13 | 5, 12 | bitr4i 187 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ (𝑅 ∩ ◡𝑅) ↔ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥)) |
14 | df-br 4031 | . . . . 5 ⊢ (𝑥 I 𝑦 ↔ 〈𝑥, 𝑦〉 ∈ I ) | |
15 | 8 | ideq 4815 | . . . . 5 ⊢ (𝑥 I 𝑦 ↔ 𝑥 = 𝑦) |
16 | 14, 15 | bitr3i 186 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ I ↔ 𝑥 = 𝑦) |
17 | 13, 16 | imbi12i 239 | . . 3 ⊢ ((〈𝑥, 𝑦〉 ∈ (𝑅 ∩ ◡𝑅) → 〈𝑥, 𝑦〉 ∈ I ) ↔ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦)) |
18 | 17 | 2albii 1482 | . 2 ⊢ (∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ (𝑅 ∩ ◡𝑅) → 〈𝑥, 𝑦〉 ∈ I ) ↔ ∀𝑥∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦)) |
19 | 4, 18 | bitri 184 | 1 ⊢ ((𝑅 ∩ ◡𝑅) ⊆ I ↔ ∀𝑥∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1362 ∈ wcel 2164 ∩ cin 3153 ⊆ wss 3154 〈cop 3622 class class class wbr 4030 I cid 4320 ◡ccnv 4659 Rel wrel 4665 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 df-opab 4092 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |