ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intasym GIF version

Theorem intasym 5109
Description: Two ways of saying a relation is antisymmetric. Definition of antisymmetry in [Schechter] p. 51. (Contributed by NM, 9-Sep-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
intasym ((𝑅𝑅) ⊆ I ↔ ∀𝑥𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦))
Distinct variable group:   𝑥,𝑦,𝑅

Proof of Theorem intasym
StepHypRef Expression
1 relcnv 5102 . . 3 Rel 𝑅
2 relin2 4835 . . 3 (Rel 𝑅 → Rel (𝑅𝑅))
3 ssrel 4804 . . 3 (Rel (𝑅𝑅) → ((𝑅𝑅) ⊆ I ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) → ⟨𝑥, 𝑦⟩ ∈ I )))
41, 2, 3mp2b 8 . 2 ((𝑅𝑅) ⊆ I ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) → ⟨𝑥, 𝑦⟩ ∈ I ))
5 elin 3387 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝑅 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑅))
6 df-br 4083 . . . . . 6 (𝑥𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
7 vex 2802 . . . . . . . 8 𝑥 ∈ V
8 vex 2802 . . . . . . . 8 𝑦 ∈ V
97, 8brcnv 4902 . . . . . . 7 (𝑥𝑅𝑦𝑦𝑅𝑥)
10 df-br 4083 . . . . . . 7 (𝑥𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
119, 10bitr3i 186 . . . . . 6 (𝑦𝑅𝑥 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
126, 11anbi12i 460 . . . . 5 ((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝑅 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑅))
135, 12bitr4i 187 . . . 4 (⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) ↔ (𝑥𝑅𝑦𝑦𝑅𝑥))
14 df-br 4083 . . . . 5 (𝑥 I 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ I )
158ideq 4871 . . . . 5 (𝑥 I 𝑦𝑥 = 𝑦)
1614, 15bitr3i 186 . . . 4 (⟨𝑥, 𝑦⟩ ∈ I ↔ 𝑥 = 𝑦)
1713, 16imbi12i 239 . . 3 ((⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) → ⟨𝑥, 𝑦⟩ ∈ I ) ↔ ((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦))
18172albii 1517 . 2 (∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) → ⟨𝑥, 𝑦⟩ ∈ I ) ↔ ∀𝑥𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦))
194, 18bitri 184 1 ((𝑅𝑅) ⊆ I ↔ ∀𝑥𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1393  wcel 2200  cin 3196  wss 3197  cop 3669   class class class wbr 4082   I cid 4376  ccnv 4715  Rel wrel 4721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator