ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qfto GIF version

Theorem qfto 5020
Description: A quantifier-free way of expressing the total order predicate. (Contributed by Mario Carneiro, 22-Nov-2013.)
Assertion
Ref Expression
qfto ((𝐴 × 𝐵) ⊆ (𝑅𝑅) ↔ ∀𝑥𝐴𝑦𝐵 (𝑥𝑅𝑦𝑦𝑅𝑥))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦

Proof of Theorem qfto
StepHypRef Expression
1 opelxp 4658 . . . 4 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) ↔ (𝑥𝐴𝑦𝐵))
2 brun 4056 . . . . 5 (𝑥(𝑅𝑅)𝑦 ↔ (𝑥𝑅𝑦𝑥𝑅𝑦))
3 df-br 4006 . . . . 5 (𝑥(𝑅𝑅)𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅))
4 vex 2742 . . . . . . 7 𝑥 ∈ V
5 vex 2742 . . . . . . 7 𝑦 ∈ V
64, 5brcnv 4812 . . . . . 6 (𝑥𝑅𝑦𝑦𝑅𝑥)
76orbi2i 762 . . . . 5 ((𝑥𝑅𝑦𝑥𝑅𝑦) ↔ (𝑥𝑅𝑦𝑦𝑅𝑥))
82, 3, 73bitr3i 210 . . . 4 (⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) ↔ (𝑥𝑅𝑦𝑦𝑅𝑥))
91, 8imbi12i 239 . . 3 ((⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → ⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅)) ↔ ((𝑥𝐴𝑦𝐵) → (𝑥𝑅𝑦𝑦𝑅𝑥)))
1092albii 1471 . 2 (∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → ⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅)) ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐵) → (𝑥𝑅𝑦𝑦𝑅𝑥)))
11 relxp 4737 . . 3 Rel (𝐴 × 𝐵)
12 ssrel 4716 . . 3 (Rel (𝐴 × 𝐵) → ((𝐴 × 𝐵) ⊆ (𝑅𝑅) ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → ⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅))))
1311, 12ax-mp 5 . 2 ((𝐴 × 𝐵) ⊆ (𝑅𝑅) ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → ⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅)))
14 r2al 2496 . 2 (∀𝑥𝐴𝑦𝐵 (𝑥𝑅𝑦𝑦𝑅𝑥) ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐵) → (𝑥𝑅𝑦𝑦𝑅𝑥)))
1510, 13, 143bitr4i 212 1 ((𝐴 × 𝐵) ⊆ (𝑅𝑅) ↔ ∀𝑥𝐴𝑦𝐵 (𝑥𝑅𝑦𝑦𝑅𝑥))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 708  wal 1351  wcel 2148  wral 2455  cun 3129  wss 3131  cop 3597   class class class wbr 4005   × cxp 4626  ccnv 4627  Rel wrel 4633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-xp 4634  df-rel 4635  df-cnv 4636
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator