| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qfto | GIF version | ||
| Description: A quantifier-free way of expressing the total order predicate. (Contributed by Mario Carneiro, 22-Nov-2013.) |
| Ref | Expression |
|---|---|
| qfto | ⊢ ((𝐴 × 𝐵) ⊆ (𝑅 ∪ ◡𝑅) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 ∨ 𝑦𝑅𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxp 4748 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
| 2 | brun 4134 | . . . . 5 ⊢ (𝑥(𝑅 ∪ ◡𝑅)𝑦 ↔ (𝑥𝑅𝑦 ∨ 𝑥◡𝑅𝑦)) | |
| 3 | df-br 4083 | . . . . 5 ⊢ (𝑥(𝑅 ∪ ◡𝑅)𝑦 ↔ 〈𝑥, 𝑦〉 ∈ (𝑅 ∪ ◡𝑅)) | |
| 4 | vex 2802 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 5 | vex 2802 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 6 | 4, 5 | brcnv 4904 | . . . . . 6 ⊢ (𝑥◡𝑅𝑦 ↔ 𝑦𝑅𝑥) |
| 7 | 6 | orbi2i 767 | . . . . 5 ⊢ ((𝑥𝑅𝑦 ∨ 𝑥◡𝑅𝑦) ↔ (𝑥𝑅𝑦 ∨ 𝑦𝑅𝑥)) |
| 8 | 2, 3, 7 | 3bitr3i 210 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ (𝑅 ∪ ◡𝑅) ↔ (𝑥𝑅𝑦 ∨ 𝑦𝑅𝑥)) |
| 9 | 1, 8 | imbi12i 239 | . . 3 ⊢ ((〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) → 〈𝑥, 𝑦〉 ∈ (𝑅 ∪ ◡𝑅)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑥𝑅𝑦 ∨ 𝑦𝑅𝑥))) |
| 10 | 9 | 2albii 1517 | . 2 ⊢ (∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) → 〈𝑥, 𝑦〉 ∈ (𝑅 ∪ ◡𝑅)) ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑥𝑅𝑦 ∨ 𝑦𝑅𝑥))) |
| 11 | relxp 4827 | . . 3 ⊢ Rel (𝐴 × 𝐵) | |
| 12 | ssrel 4806 | . . 3 ⊢ (Rel (𝐴 × 𝐵) → ((𝐴 × 𝐵) ⊆ (𝑅 ∪ ◡𝑅) ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) → 〈𝑥, 𝑦〉 ∈ (𝑅 ∪ ◡𝑅)))) | |
| 13 | 11, 12 | ax-mp 5 | . 2 ⊢ ((𝐴 × 𝐵) ⊆ (𝑅 ∪ ◡𝑅) ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) → 〈𝑥, 𝑦〉 ∈ (𝑅 ∪ ◡𝑅))) |
| 14 | r2al 2549 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 ∨ 𝑦𝑅𝑥) ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑥𝑅𝑦 ∨ 𝑦𝑅𝑥))) | |
| 15 | 10, 13, 14 | 3bitr4i 212 | 1 ⊢ ((𝐴 × 𝐵) ⊆ (𝑅 ∪ ◡𝑅) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 ∨ 𝑦𝑅𝑥)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 713 ∀wal 1393 ∈ wcel 2200 ∀wral 2508 ∪ cun 3195 ⊆ wss 3197 〈cop 3669 class class class wbr 4082 × cxp 4716 ◡ccnv 4717 Rel wrel 4723 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-xp 4724 df-rel 4725 df-cnv 4726 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |