ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  codir GIF version

Theorem codir 5076
Description: Two ways of saying a relation is directed. (Contributed by Mario Carneiro, 22-Nov-2013.)
Assertion
Ref Expression
codir ((𝐴 × 𝐵) ⊆ (𝑅𝑅) ↔ ∀𝑥𝐴𝑦𝐵𝑧(𝑥𝑅𝑧𝑦𝑅𝑧))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧

Proof of Theorem codir
StepHypRef Expression
1 opelxp 4709 . . . 4 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) ↔ (𝑥𝐴𝑦𝐵))
2 df-br 4048 . . . . 5 (𝑥(𝑅𝑅)𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅))
3 vex 2776 . . . . . 6 𝑥 ∈ V
4 vex 2776 . . . . . 6 𝑦 ∈ V
5 brcodir 5075 . . . . . 6 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥(𝑅𝑅)𝑦 ↔ ∃𝑧(𝑥𝑅𝑧𝑦𝑅𝑧)))
63, 4, 5mp2an 426 . . . . 5 (𝑥(𝑅𝑅)𝑦 ↔ ∃𝑧(𝑥𝑅𝑧𝑦𝑅𝑧))
72, 6bitr3i 186 . . . 4 (⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) ↔ ∃𝑧(𝑥𝑅𝑧𝑦𝑅𝑧))
81, 7imbi12i 239 . . 3 ((⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → ⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅)) ↔ ((𝑥𝐴𝑦𝐵) → ∃𝑧(𝑥𝑅𝑧𝑦𝑅𝑧)))
982albii 1495 . 2 (∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → ⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅)) ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐵) → ∃𝑧(𝑥𝑅𝑧𝑦𝑅𝑧)))
10 relxp 4788 . . 3 Rel (𝐴 × 𝐵)
11 ssrel 4767 . . 3 (Rel (𝐴 × 𝐵) → ((𝐴 × 𝐵) ⊆ (𝑅𝑅) ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → ⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅))))
1210, 11ax-mp 5 . 2 ((𝐴 × 𝐵) ⊆ (𝑅𝑅) ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → ⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅)))
13 r2al 2526 . 2 (∀𝑥𝐴𝑦𝐵𝑧(𝑥𝑅𝑧𝑦𝑅𝑧) ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐵) → ∃𝑧(𝑥𝑅𝑧𝑦𝑅𝑧)))
149, 12, 133bitr4i 212 1 ((𝐴 × 𝐵) ⊆ (𝑅𝑅) ↔ ∀𝑥𝐴𝑦𝐵𝑧(𝑥𝑅𝑧𝑦𝑅𝑧))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1371  wex 1516  wcel 2177  wral 2485  Vcvv 2773  wss 3167  cop 3637   class class class wbr 4047   × cxp 4677  ccnv 4678  ccom 4683  Rel wrel 4684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-br 4048  df-opab 4110  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator