| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > codir | GIF version | ||
| Description: Two ways of saying a relation is directed. (Contributed by Mario Carneiro, 22-Nov-2013.) |
| Ref | Expression |
|---|---|
| codir | ⊢ ((𝐴 × 𝐵) ⊆ (◡𝑅 ∘ 𝑅) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∃𝑧(𝑥𝑅𝑧 ∧ 𝑦𝑅𝑧)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxp 4693 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
| 2 | df-br 4034 | . . . . 5 ⊢ (𝑥(◡𝑅 ∘ 𝑅)𝑦 ↔ 〈𝑥, 𝑦〉 ∈ (◡𝑅 ∘ 𝑅)) | |
| 3 | vex 2766 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 4 | vex 2766 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 5 | brcodir 5057 | . . . . . 6 ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥(◡𝑅 ∘ 𝑅)𝑦 ↔ ∃𝑧(𝑥𝑅𝑧 ∧ 𝑦𝑅𝑧))) | |
| 6 | 3, 4, 5 | mp2an 426 | . . . . 5 ⊢ (𝑥(◡𝑅 ∘ 𝑅)𝑦 ↔ ∃𝑧(𝑥𝑅𝑧 ∧ 𝑦𝑅𝑧)) |
| 7 | 2, 6 | bitr3i 186 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ (◡𝑅 ∘ 𝑅) ↔ ∃𝑧(𝑥𝑅𝑧 ∧ 𝑦𝑅𝑧)) |
| 8 | 1, 7 | imbi12i 239 | . . 3 ⊢ ((〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) → 〈𝑥, 𝑦〉 ∈ (◡𝑅 ∘ 𝑅)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ∃𝑧(𝑥𝑅𝑧 ∧ 𝑦𝑅𝑧))) |
| 9 | 8 | 2albii 1485 | . 2 ⊢ (∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) → 〈𝑥, 𝑦〉 ∈ (◡𝑅 ∘ 𝑅)) ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ∃𝑧(𝑥𝑅𝑧 ∧ 𝑦𝑅𝑧))) |
| 10 | relxp 4772 | . . 3 ⊢ Rel (𝐴 × 𝐵) | |
| 11 | ssrel 4751 | . . 3 ⊢ (Rel (𝐴 × 𝐵) → ((𝐴 × 𝐵) ⊆ (◡𝑅 ∘ 𝑅) ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) → 〈𝑥, 𝑦〉 ∈ (◡𝑅 ∘ 𝑅)))) | |
| 12 | 10, 11 | ax-mp 5 | . 2 ⊢ ((𝐴 × 𝐵) ⊆ (◡𝑅 ∘ 𝑅) ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) → 〈𝑥, 𝑦〉 ∈ (◡𝑅 ∘ 𝑅))) |
| 13 | r2al 2516 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∃𝑧(𝑥𝑅𝑧 ∧ 𝑦𝑅𝑧) ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ∃𝑧(𝑥𝑅𝑧 ∧ 𝑦𝑅𝑧))) | |
| 14 | 9, 12, 13 | 3bitr4i 212 | 1 ⊢ ((𝐴 × 𝐵) ⊆ (◡𝑅 ∘ 𝑅) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∃𝑧(𝑥𝑅𝑧 ∧ 𝑦𝑅𝑧)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1362 ∃wex 1506 ∈ wcel 2167 ∀wral 2475 Vcvv 2763 ⊆ wss 3157 〈cop 3625 class class class wbr 4033 × cxp 4661 ◡ccnv 4662 ∘ ccom 4667 Rel wrel 4668 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |