Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > codir | GIF version |
Description: Two ways of saying a relation is directed. (Contributed by Mario Carneiro, 22-Nov-2013.) |
Ref | Expression |
---|---|
codir | ⊢ ((𝐴 × 𝐵) ⊆ (◡𝑅 ∘ 𝑅) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∃𝑧(𝑥𝑅𝑧 ∧ 𝑦𝑅𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxp 4634 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
2 | df-br 3983 | . . . . 5 ⊢ (𝑥(◡𝑅 ∘ 𝑅)𝑦 ↔ 〈𝑥, 𝑦〉 ∈ (◡𝑅 ∘ 𝑅)) | |
3 | vex 2729 | . . . . . 6 ⊢ 𝑥 ∈ V | |
4 | vex 2729 | . . . . . 6 ⊢ 𝑦 ∈ V | |
5 | brcodir 4991 | . . . . . 6 ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥(◡𝑅 ∘ 𝑅)𝑦 ↔ ∃𝑧(𝑥𝑅𝑧 ∧ 𝑦𝑅𝑧))) | |
6 | 3, 4, 5 | mp2an 423 | . . . . 5 ⊢ (𝑥(◡𝑅 ∘ 𝑅)𝑦 ↔ ∃𝑧(𝑥𝑅𝑧 ∧ 𝑦𝑅𝑧)) |
7 | 2, 6 | bitr3i 185 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ (◡𝑅 ∘ 𝑅) ↔ ∃𝑧(𝑥𝑅𝑧 ∧ 𝑦𝑅𝑧)) |
8 | 1, 7 | imbi12i 238 | . . 3 ⊢ ((〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) → 〈𝑥, 𝑦〉 ∈ (◡𝑅 ∘ 𝑅)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ∃𝑧(𝑥𝑅𝑧 ∧ 𝑦𝑅𝑧))) |
9 | 8 | 2albii 1459 | . 2 ⊢ (∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) → 〈𝑥, 𝑦〉 ∈ (◡𝑅 ∘ 𝑅)) ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ∃𝑧(𝑥𝑅𝑧 ∧ 𝑦𝑅𝑧))) |
10 | relxp 4713 | . . 3 ⊢ Rel (𝐴 × 𝐵) | |
11 | ssrel 4692 | . . 3 ⊢ (Rel (𝐴 × 𝐵) → ((𝐴 × 𝐵) ⊆ (◡𝑅 ∘ 𝑅) ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) → 〈𝑥, 𝑦〉 ∈ (◡𝑅 ∘ 𝑅)))) | |
12 | 10, 11 | ax-mp 5 | . 2 ⊢ ((𝐴 × 𝐵) ⊆ (◡𝑅 ∘ 𝑅) ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) → 〈𝑥, 𝑦〉 ∈ (◡𝑅 ∘ 𝑅))) |
13 | r2al 2485 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∃𝑧(𝑥𝑅𝑧 ∧ 𝑦𝑅𝑧) ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ∃𝑧(𝑥𝑅𝑧 ∧ 𝑦𝑅𝑧))) | |
14 | 9, 12, 13 | 3bitr4i 211 | 1 ⊢ ((𝐴 × 𝐵) ⊆ (◡𝑅 ∘ 𝑅) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∃𝑧(𝑥𝑅𝑧 ∧ 𝑦𝑅𝑧)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∀wal 1341 ∃wex 1480 ∈ wcel 2136 ∀wral 2444 Vcvv 2726 ⊆ wss 3116 〈cop 3579 class class class wbr 3982 × cxp 4602 ◡ccnv 4603 ∘ ccom 4608 Rel wrel 4609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |