| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > codir | GIF version | ||
| Description: Two ways of saying a relation is directed. (Contributed by Mario Carneiro, 22-Nov-2013.) |
| Ref | Expression |
|---|---|
| codir | ⊢ ((𝐴 × 𝐵) ⊆ (◡𝑅 ∘ 𝑅) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∃𝑧(𝑥𝑅𝑧 ∧ 𝑦𝑅𝑧)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxp 4709 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
| 2 | df-br 4048 | . . . . 5 ⊢ (𝑥(◡𝑅 ∘ 𝑅)𝑦 ↔ 〈𝑥, 𝑦〉 ∈ (◡𝑅 ∘ 𝑅)) | |
| 3 | vex 2776 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 4 | vex 2776 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 5 | brcodir 5075 | . . . . . 6 ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥(◡𝑅 ∘ 𝑅)𝑦 ↔ ∃𝑧(𝑥𝑅𝑧 ∧ 𝑦𝑅𝑧))) | |
| 6 | 3, 4, 5 | mp2an 426 | . . . . 5 ⊢ (𝑥(◡𝑅 ∘ 𝑅)𝑦 ↔ ∃𝑧(𝑥𝑅𝑧 ∧ 𝑦𝑅𝑧)) |
| 7 | 2, 6 | bitr3i 186 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ (◡𝑅 ∘ 𝑅) ↔ ∃𝑧(𝑥𝑅𝑧 ∧ 𝑦𝑅𝑧)) |
| 8 | 1, 7 | imbi12i 239 | . . 3 ⊢ ((〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) → 〈𝑥, 𝑦〉 ∈ (◡𝑅 ∘ 𝑅)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ∃𝑧(𝑥𝑅𝑧 ∧ 𝑦𝑅𝑧))) |
| 9 | 8 | 2albii 1495 | . 2 ⊢ (∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) → 〈𝑥, 𝑦〉 ∈ (◡𝑅 ∘ 𝑅)) ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ∃𝑧(𝑥𝑅𝑧 ∧ 𝑦𝑅𝑧))) |
| 10 | relxp 4788 | . . 3 ⊢ Rel (𝐴 × 𝐵) | |
| 11 | ssrel 4767 | . . 3 ⊢ (Rel (𝐴 × 𝐵) → ((𝐴 × 𝐵) ⊆ (◡𝑅 ∘ 𝑅) ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) → 〈𝑥, 𝑦〉 ∈ (◡𝑅 ∘ 𝑅)))) | |
| 12 | 10, 11 | ax-mp 5 | . 2 ⊢ ((𝐴 × 𝐵) ⊆ (◡𝑅 ∘ 𝑅) ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) → 〈𝑥, 𝑦〉 ∈ (◡𝑅 ∘ 𝑅))) |
| 13 | r2al 2526 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∃𝑧(𝑥𝑅𝑧 ∧ 𝑦𝑅𝑧) ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ∃𝑧(𝑥𝑅𝑧 ∧ 𝑦𝑅𝑧))) | |
| 14 | 9, 12, 13 | 3bitr4i 212 | 1 ⊢ ((𝐴 × 𝐵) ⊆ (◡𝑅 ∘ 𝑅) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∃𝑧(𝑥𝑅𝑧 ∧ 𝑦𝑅𝑧)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1371 ∃wex 1516 ∈ wcel 2177 ∀wral 2485 Vcvv 2773 ⊆ wss 3167 〈cop 3637 class class class wbr 4047 × cxp 4677 ◡ccnv 4678 ∘ ccom 4683 Rel wrel 4684 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-br 4048 df-opab 4110 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |