| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > breqtri | GIF version | ||
| Description: Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| breqtr.1 | ⊢ 𝐴𝑅𝐵 |
| breqtr.2 | ⊢ 𝐵 = 𝐶 |
| Ref | Expression |
|---|---|
| breqtri | ⊢ 𝐴𝑅𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breqtr.1 | . 2 ⊢ 𝐴𝑅𝐵 | |
| 2 | breqtr.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
| 3 | 2 | breq2i 4091 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 𝐴𝑅𝐶) |
| 4 | 1, 3 | mpbi 145 | 1 ⊢ 𝐴𝑅𝐶 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 class class class wbr 4083 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 |
| This theorem is referenced by: breqtrri 4110 3brtr3i 4112 le9lt10 9604 9lt10 9708 sqrt2gt1lt2 11560 trireciplem 12011 cos1bnd 12270 cos2bnd 12271 cos01gt0 12274 sin4lt0 12278 z4even 12427 dec2dvds 12934 coseq00topi 15509 sincos4thpi 15514 lgsdir2lem2 15708 lgsdir2lem3 15709 ex-fl 16089 |
| Copyright terms: Public domain | W3C validator |