![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > breqtri | GIF version |
Description: Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
breqtr.1 | ⊢ 𝐴𝑅𝐵 |
breqtr.2 | ⊢ 𝐵 = 𝐶 |
Ref | Expression |
---|---|
breqtri | ⊢ 𝐴𝑅𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breqtr.1 | . 2 ⊢ 𝐴𝑅𝐵 | |
2 | breqtr.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
3 | 2 | breq2i 4023 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 𝐴𝑅𝐶) |
4 | 1, 3 | mpbi 145 | 1 ⊢ 𝐴𝑅𝐶 |
Colors of variables: wff set class |
Syntax hints: = wceq 1363 class class class wbr 4015 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-v 2751 df-un 3145 df-sn 3610 df-pr 3611 df-op 3613 df-br 4016 |
This theorem is referenced by: breqtrri 4042 3brtr3i 4044 le9lt10 9424 9lt10 9528 sqrt2gt1lt2 11072 trireciplem 11522 cos1bnd 11781 cos2bnd 11782 cos01gt0 11784 sin4lt0 11788 z4even 11935 coseq00topi 14609 sincos4thpi 14614 lgsdir2lem2 14783 lgsdir2lem3 14784 ex-fl 14830 |
Copyright terms: Public domain | W3C validator |