![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > breqtri | GIF version |
Description: Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
breqtr.1 | ⊢ 𝐴𝑅𝐵 |
breqtr.2 | ⊢ 𝐵 = 𝐶 |
Ref | Expression |
---|---|
breqtri | ⊢ 𝐴𝑅𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breqtr.1 | . 2 ⊢ 𝐴𝑅𝐵 | |
2 | breqtr.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
3 | 2 | breq2i 4037 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 𝐴𝑅𝐶) |
4 | 1, 3 | mpbi 145 | 1 ⊢ 𝐴𝑅𝐶 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 class class class wbr 4029 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3157 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 |
This theorem is referenced by: breqtrri 4056 3brtr3i 4058 le9lt10 9474 9lt10 9578 sqrt2gt1lt2 11193 trireciplem 11643 cos1bnd 11902 cos2bnd 11903 cos01gt0 11906 sin4lt0 11910 z4even 12057 coseq00topi 14970 sincos4thpi 14975 lgsdir2lem2 15145 lgsdir2lem3 15146 ex-fl 15217 |
Copyright terms: Public domain | W3C validator |