ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breqtri GIF version

Theorem breqtri 4040
Description: Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
breqtr.1 𝐴𝑅𝐵
breqtr.2 𝐵 = 𝐶
Assertion
Ref Expression
breqtri 𝐴𝑅𝐶

Proof of Theorem breqtri
StepHypRef Expression
1 breqtr.1 . 2 𝐴𝑅𝐵
2 breqtr.2 . . 3 𝐵 = 𝐶
32breq2i 4023 . 2 (𝐴𝑅𝐵𝐴𝑅𝐶)
41, 3mpbi 145 1 𝐴𝑅𝐶
Colors of variables: wff set class
Syntax hints:   = wceq 1363   class class class wbr 4015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-v 2751  df-un 3145  df-sn 3610  df-pr 3611  df-op 3613  df-br 4016
This theorem is referenced by:  breqtrri  4042  3brtr3i  4044  le9lt10  9424  9lt10  9528  sqrt2gt1lt2  11072  trireciplem  11522  cos1bnd  11781  cos2bnd  11782  cos01gt0  11784  sin4lt0  11788  z4even  11935  coseq00topi  14609  sincos4thpi  14614  lgsdir2lem2  14783  lgsdir2lem3  14784  ex-fl  14830
  Copyright terms: Public domain W3C validator