| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqbrtrri | GIF version | ||
| Description: Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqbrtrr.1 | ⊢ 𝐴 = 𝐵 |
| eqbrtrr.2 | ⊢ 𝐴𝑅𝐶 |
| Ref | Expression |
|---|---|
| eqbrtrri | ⊢ 𝐵𝑅𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqbrtrr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | eqcomi 2208 | . 2 ⊢ 𝐵 = 𝐴 |
| 3 | eqbrtrr.2 | . 2 ⊢ 𝐴𝑅𝐶 | |
| 4 | 2, 3 | eqbrtri 4064 | 1 ⊢ 𝐵𝑅𝐶 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 class class class wbr 4043 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-un 3169 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 |
| This theorem is referenced by: 3brtr3i 4072 dju1p1e2 7287 expnass 10771 sqrt2gt1lt2 11279 cos1bnd 11989 cos2bnd 11990 infpn2 12746 2strstr1g 12872 coseq00topi 15225 pigt3 15234 |
| Copyright terms: Public domain | W3C validator |