ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqbrtrri GIF version

Theorem eqbrtrri 4066
Description: Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
eqbrtrr.1 𝐴 = 𝐵
eqbrtrr.2 𝐴𝑅𝐶
Assertion
Ref Expression
eqbrtrri 𝐵𝑅𝐶

Proof of Theorem eqbrtrri
StepHypRef Expression
1 eqbrtrr.1 . . 3 𝐴 = 𝐵
21eqcomi 2208 . 2 𝐵 = 𝐴
3 eqbrtrr.2 . 2 𝐴𝑅𝐶
42, 3eqbrtri 4064 1 𝐵𝑅𝐶
Colors of variables: wff set class
Syntax hints:   = wceq 1372   class class class wbr 4043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-un 3169  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044
This theorem is referenced by:  3brtr3i  4072  dju1p1e2  7287  expnass  10771  sqrt2gt1lt2  11279  cos1bnd  11989  cos2bnd  11990  infpn2  12746  2strstr1g  12872  coseq00topi  15225  pigt3  15234
  Copyright terms: Public domain W3C validator