Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3brtr4i | GIF version |
Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 11-Aug-1999.) |
Ref | Expression |
---|---|
3brtr4.1 | ⊢ 𝐴𝑅𝐵 |
3brtr4.2 | ⊢ 𝐶 = 𝐴 |
3brtr4.3 | ⊢ 𝐷 = 𝐵 |
Ref | Expression |
---|---|
3brtr4i | ⊢ 𝐶𝑅𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3brtr4.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
2 | 3brtr4.1 | . . 3 ⊢ 𝐴𝑅𝐵 | |
3 | 1, 2 | eqbrtri 4003 | . 2 ⊢ 𝐶𝑅𝐵 |
4 | 3brtr4.3 | . 2 ⊢ 𝐷 = 𝐵 | |
5 | 3, 4 | breqtrri 4009 | 1 ⊢ 𝐶𝑅𝐷 |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 class class class wbr 3982 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 |
This theorem is referenced by: 1lt2nq 7347 0lt1sr 7706 ax0lt1 7817 declt 9349 decltc 9350 decle 9355 frecfzennn 10361 fsumabs 11406 2strbasg 12496 2stropg 12497 |
Copyright terms: Public domain | W3C validator |