| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3brtr4i | GIF version | ||
| Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 11-Aug-1999.) |
| Ref | Expression |
|---|---|
| 3brtr4.1 | ⊢ 𝐴𝑅𝐵 |
| 3brtr4.2 | ⊢ 𝐶 = 𝐴 |
| 3brtr4.3 | ⊢ 𝐷 = 𝐵 |
| Ref | Expression |
|---|---|
| 3brtr4i | ⊢ 𝐶𝑅𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3brtr4.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
| 2 | 3brtr4.1 | . . 3 ⊢ 𝐴𝑅𝐵 | |
| 3 | 1, 2 | eqbrtri 4103 | . 2 ⊢ 𝐶𝑅𝐵 |
| 4 | 3brtr4.3 | . 2 ⊢ 𝐷 = 𝐵 | |
| 5 | 3, 4 | breqtrri 4109 | 1 ⊢ 𝐶𝑅𝐷 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 class class class wbr 4082 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 |
| This theorem is referenced by: 1lt2nq 7589 0lt1sr 7948 ax0lt1 8059 declt 9601 decltc 9602 decle 9607 frecfzennn 10643 fsumabs 11971 basendxltplusgndx 13141 2strbasg 13148 2stropg 13149 basendxlttsetndx 13218 basendxltplendx 13232 basendxltdsndx 13247 basendxltunifndx 13257 basendxltedgfndx 15805 |
| Copyright terms: Public domain | W3C validator |