ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3imtr3d GIF version

Theorem 3imtr3d 201
Description: More general version of 3imtr3i 199. Useful for converting conditional definitions in a formula. (Contributed by NM, 8-Apr-1996.)
Hypotheses
Ref Expression
3imtr3d.1 (𝜑 → (𝜓𝜒))
3imtr3d.2 (𝜑 → (𝜓𝜃))
3imtr3d.3 (𝜑 → (𝜒𝜏))
Assertion
Ref Expression
3imtr3d (𝜑 → (𝜃𝜏))

Proof of Theorem 3imtr3d
StepHypRef Expression
1 3imtr3d.2 . 2 (𝜑 → (𝜓𝜃))
2 3imtr3d.1 . . 3 (𝜑 → (𝜓𝜒))
3 3imtr3d.3 . . 3 (𝜑 → (𝜒𝜏))
42, 3sylibd 148 . 2 (𝜑 → (𝜓𝜏))
51, 4sylbird 169 1 (𝜑 → (𝜃𝜏))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  f1imass  5741  fornex  6080  tposfn2  6230  eroveu  6588  ismkvnex  7115  indpi  7279  axcaucvglemres  7836  qsqeqor  10561  caucvgrelemcau  10918  m1dvdsndvds  12176  pcpremul  12221  pcaddlem  12266  pockthlem  12282  limccnpcntop  13244  sincosq1sgn  13347  sincosq2sgn  13348  subctctexmid  13841
  Copyright terms: Public domain W3C validator