ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3imtr3d GIF version

Theorem 3imtr3d 202
Description: More general version of 3imtr3i 200. Useful for converting conditional definitions in a formula. (Contributed by NM, 8-Apr-1996.)
Hypotheses
Ref Expression
3imtr3d.1 (𝜑 → (𝜓𝜒))
3imtr3d.2 (𝜑 → (𝜓𝜃))
3imtr3d.3 (𝜑 → (𝜒𝜏))
Assertion
Ref Expression
3imtr3d (𝜑 → (𝜃𝜏))

Proof of Theorem 3imtr3d
StepHypRef Expression
1 3imtr3d.2 . 2 (𝜑 → (𝜓𝜃))
2 3imtr3d.1 . . 3 (𝜑 → (𝜓𝜒))
3 3imtr3d.3 . . 3 (𝜑 → (𝜒𝜏))
42, 3sylibd 149 . 2 (𝜑 → (𝜓𝜏))
51, 4sylbird 170 1 (𝜑 → (𝜃𝜏))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  f1imass  5821  focdmex  6172  tposfn2  6324  eroveu  6685  ismkvnex  7221  indpi  7409  axcaucvglemres  7966  qsqeqor  10742  caucvgrelemcau  11145  m1dvdsndvds  12417  pcpremul  12462  pcaddlem  12508  pockthlem  12525  issgrpd  13055  ghmf1  13403  islssmd  13915  znrrg  14216  limccnpcntop  14911  sincosq1sgn  15062  sincosq2sgn  15063  lgseisenlem2  15312  subctctexmid  15645  neap0mkv  15713
  Copyright terms: Public domain W3C validator