![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3imtr3d | GIF version |
Description: More general version of 3imtr3i 200. Useful for converting conditional definitions in a formula. (Contributed by NM, 8-Apr-1996.) |
Ref | Expression |
---|---|
3imtr3d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
3imtr3d.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
3imtr3d.3 | ⊢ (𝜑 → (𝜒 ↔ 𝜏)) |
Ref | Expression |
---|---|
3imtr3d | ⊢ (𝜑 → (𝜃 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imtr3d.2 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | |
2 | 3imtr3d.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 3imtr3d.3 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜏)) | |
4 | 2, 3 | sylibd 149 | . 2 ⊢ (𝜑 → (𝜓 → 𝜏)) |
5 | 1, 4 | sylbird 170 | 1 ⊢ (𝜑 → (𝜃 → 𝜏)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: f1imass 5818 focdmex 6169 tposfn2 6321 eroveu 6682 ismkvnex 7216 indpi 7404 axcaucvglemres 7961 qsqeqor 10724 caucvgrelemcau 11127 m1dvdsndvds 12389 pcpremul 12434 pcaddlem 12480 pockthlem 12497 issgrpd 12998 ghmf1 13346 islssmd 13858 znrrg 14159 limccnpcntop 14854 sincosq1sgn 15002 sincosq2sgn 15003 lgseisenlem2 15228 subctctexmid 15561 neap0mkv 15629 |
Copyright terms: Public domain | W3C validator |