ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3imtr3d GIF version

Theorem 3imtr3d 202
Description: More general version of 3imtr3i 200. Useful for converting conditional definitions in a formula. (Contributed by NM, 8-Apr-1996.)
Hypotheses
Ref Expression
3imtr3d.1 (𝜑 → (𝜓𝜒))
3imtr3d.2 (𝜑 → (𝜓𝜃))
3imtr3d.3 (𝜑 → (𝜒𝜏))
Assertion
Ref Expression
3imtr3d (𝜑 → (𝜃𝜏))

Proof of Theorem 3imtr3d
StepHypRef Expression
1 3imtr3d.2 . 2 (𝜑 → (𝜓𝜃))
2 3imtr3d.1 . . 3 (𝜑 → (𝜓𝜒))
3 3imtr3d.3 . . 3 (𝜑 → (𝜒𝜏))
42, 3sylibd 149 . 2 (𝜑 → (𝜓𝜏))
51, 4sylbird 170 1 (𝜑 → (𝜃𝜏))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  f1imass  5822  focdmex  6173  tposfn2  6325  eroveu  6686  ismkvnex  7222  indpi  7411  axcaucvglemres  7968  qsqeqor  10744  caucvgrelemcau  11147  m1dvdsndvds  12427  pcpremul  12472  pcaddlem  12518  pockthlem  12535  issgrpd  13065  ghmf1  13413  islssmd  13925  znrrg  14226  limccnpcntop  14921  sincosq1sgn  15072  sincosq2sgn  15073  lgseisenlem2  15322  subctctexmid  15655  neap0mkv  15723
  Copyright terms: Public domain W3C validator