| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3imtr3d | GIF version | ||
| Description: More general version of 3imtr3i 200. Useful for converting conditional definitions in a formula. (Contributed by NM, 8-Apr-1996.) |
| Ref | Expression |
|---|---|
| 3imtr3d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3imtr3d.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| 3imtr3d.3 | ⊢ (𝜑 → (𝜒 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| 3imtr3d | ⊢ (𝜑 → (𝜃 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imtr3d.2 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | |
| 2 | 3imtr3d.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 3imtr3d.3 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜏)) | |
| 4 | 2, 3 | sylibd 149 | . 2 ⊢ (𝜑 → (𝜓 → 𝜏)) |
| 5 | 1, 4 | sylbird 170 | 1 ⊢ (𝜑 → (𝜃 → 𝜏)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: f1imass 5904 focdmex 6266 tposfn2 6418 eroveu 6781 ismkvnex 7330 indpi 7537 axcaucvglemres 8094 qsqeqor 10880 caucvgrelemcau 11499 m1dvdsndvds 12779 pcpremul 12824 pcaddlem 12870 pockthlem 12887 issgrpd 13453 ghmf1 13818 islssmd 14331 znrrg 14632 limccnpcntop 15357 sincosq1sgn 15508 sincosq2sgn 15509 lgseisenlem2 15758 subctctexmid 16395 neap0mkv 16467 |
| Copyright terms: Public domain | W3C validator |