ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3imtr3d GIF version

Theorem 3imtr3d 202
Description: More general version of 3imtr3i 200. Useful for converting conditional definitions in a formula. (Contributed by NM, 8-Apr-1996.)
Hypotheses
Ref Expression
3imtr3d.1 (𝜑 → (𝜓𝜒))
3imtr3d.2 (𝜑 → (𝜓𝜃))
3imtr3d.3 (𝜑 → (𝜒𝜏))
Assertion
Ref Expression
3imtr3d (𝜑 → (𝜃𝜏))

Proof of Theorem 3imtr3d
StepHypRef Expression
1 3imtr3d.2 . 2 (𝜑 → (𝜓𝜃))
2 3imtr3d.1 . . 3 (𝜑 → (𝜓𝜒))
3 3imtr3d.3 . . 3 (𝜑 → (𝜒𝜏))
42, 3sylibd 149 . 2 (𝜑 → (𝜓𝜏))
51, 4sylbird 170 1 (𝜑 → (𝜃𝜏))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  f1imass  5891  focdmex  6250  tposfn2  6402  eroveu  6763  ismkvnex  7310  indpi  7517  axcaucvglemres  8074  qsqeqor  10859  caucvgrelemcau  11477  m1dvdsndvds  12757  pcpremul  12802  pcaddlem  12848  pockthlem  12865  issgrpd  13431  ghmf1  13796  islssmd  14308  znrrg  14609  limccnpcntop  15334  sincosq1sgn  15485  sincosq2sgn  15486  lgseisenlem2  15735  subctctexmid  16297  neap0mkv  16368
  Copyright terms: Public domain W3C validator