![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3imtr3d | GIF version |
Description: More general version of 3imtr3i 200. Useful for converting conditional definitions in a formula. (Contributed by NM, 8-Apr-1996.) |
Ref | Expression |
---|---|
3imtr3d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
3imtr3d.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
3imtr3d.3 | ⊢ (𝜑 → (𝜒 ↔ 𝜏)) |
Ref | Expression |
---|---|
3imtr3d | ⊢ (𝜑 → (𝜃 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imtr3d.2 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | |
2 | 3imtr3d.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 3imtr3d.3 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜏)) | |
4 | 2, 3 | sylibd 149 | . 2 ⊢ (𝜑 → (𝜓 → 𝜏)) |
5 | 1, 4 | sylbird 170 | 1 ⊢ (𝜑 → (𝜃 → 𝜏)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: f1imass 5777 focdmex 6118 tposfn2 6269 eroveu 6628 ismkvnex 7155 indpi 7343 axcaucvglemres 7900 qsqeqor 10633 caucvgrelemcau 10991 m1dvdsndvds 12250 pcpremul 12295 pcaddlem 12340 pockthlem 12356 islssmd 13451 limccnpcntop 14183 sincosq1sgn 14286 sincosq2sgn 14287 lgseisenlem2 14490 subctctexmid 14789 neap0mkv 14856 |
Copyright terms: Public domain | W3C validator |