Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3imtr3d | GIF version |
Description: More general version of 3imtr3i 199. Useful for converting conditional definitions in a formula. (Contributed by NM, 8-Apr-1996.) |
Ref | Expression |
---|---|
3imtr3d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
3imtr3d.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
3imtr3d.3 | ⊢ (𝜑 → (𝜒 ↔ 𝜏)) |
Ref | Expression |
---|---|
3imtr3d | ⊢ (𝜑 → (𝜃 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imtr3d.2 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | |
2 | 3imtr3d.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 3imtr3d.3 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜏)) | |
4 | 2, 3 | sylibd 148 | . 2 ⊢ (𝜑 → (𝜓 → 𝜏)) |
5 | 1, 4 | sylbird 169 | 1 ⊢ (𝜑 → (𝜃 → 𝜏)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: f1imass 5741 fornex 6080 tposfn2 6230 eroveu 6588 ismkvnex 7115 indpi 7279 axcaucvglemres 7836 qsqeqor 10561 caucvgrelemcau 10918 m1dvdsndvds 12176 pcpremul 12221 pcaddlem 12266 pockthlem 12282 limccnpcntop 13244 sincosq1sgn 13347 sincosq2sgn 13348 subctctexmid 13841 |
Copyright terms: Public domain | W3C validator |