| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3imtr3d | GIF version | ||
| Description: More general version of 3imtr3i 200. Useful for converting conditional definitions in a formula. (Contributed by NM, 8-Apr-1996.) |
| Ref | Expression |
|---|---|
| 3imtr3d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3imtr3d.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| 3imtr3d.3 | ⊢ (𝜑 → (𝜒 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| 3imtr3d | ⊢ (𝜑 → (𝜃 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imtr3d.2 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | |
| 2 | 3imtr3d.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 3imtr3d.3 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜏)) | |
| 4 | 2, 3 | sylibd 149 | . 2 ⊢ (𝜑 → (𝜓 → 𝜏)) |
| 5 | 1, 4 | sylbird 170 | 1 ⊢ (𝜑 → (𝜃 → 𝜏)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: f1imass 5821 focdmex 6172 tposfn2 6324 eroveu 6685 ismkvnex 7221 indpi 7409 axcaucvglemres 7966 qsqeqor 10742 caucvgrelemcau 11145 m1dvdsndvds 12417 pcpremul 12462 pcaddlem 12508 pockthlem 12525 issgrpd 13055 ghmf1 13403 islssmd 13915 znrrg 14216 limccnpcntop 14911 sincosq1sgn 15062 sincosq2sgn 15063 lgseisenlem2 15312 subctctexmid 15645 neap0mkv 15713 |
| Copyright terms: Public domain | W3C validator |