ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3imtr3d GIF version

Theorem 3imtr3d 200
Description: More general version of 3imtr3i 198. Useful for converting conditional definitions in a formula. (Contributed by NM, 8-Apr-1996.)
Hypotheses
Ref Expression
3imtr3d.1 (𝜑 → (𝜓𝜒))
3imtr3d.2 (𝜑 → (𝜓𝜃))
3imtr3d.3 (𝜑 → (𝜒𝜏))
Assertion
Ref Expression
3imtr3d (𝜑 → (𝜃𝜏))

Proof of Theorem 3imtr3d
StepHypRef Expression
1 3imtr3d.2 . 2 (𝜑 → (𝜓𝜃))
2 3imtr3d.1 . . 3 (𝜑 → (𝜓𝜒))
3 3imtr3d.3 . . 3 (𝜑 → (𝜒𝜏))
42, 3sylibd 147 . 2 (𝜑 → (𝜓𝜏))
51, 4sylbird 168 1 (𝜑 → (𝜃𝜏))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106
This theorem depends on definitions:  df-bi 115
This theorem is referenced by:  f1imass  5514  fornex  5843  tposfn2  5985  eroveu  6335  indpi  6845  axcaucvglemres  7378  caucvgrelemcau  10308
  Copyright terms: Public domain W3C validator