| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3imtr3d | GIF version | ||
| Description: More general version of 3imtr3i 200. Useful for converting conditional definitions in a formula. (Contributed by NM, 8-Apr-1996.) |
| Ref | Expression |
|---|---|
| 3imtr3d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3imtr3d.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| 3imtr3d.3 | ⊢ (𝜑 → (𝜒 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| 3imtr3d | ⊢ (𝜑 → (𝜃 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imtr3d.2 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | |
| 2 | 3imtr3d.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 3imtr3d.3 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜏)) | |
| 4 | 2, 3 | sylibd 149 | . 2 ⊢ (𝜑 → (𝜓 → 𝜏)) |
| 5 | 1, 4 | sylbird 170 | 1 ⊢ (𝜑 → (𝜃 → 𝜏)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: f1imass 5822 focdmex 6173 tposfn2 6325 eroveu 6686 ismkvnex 7222 indpi 7411 axcaucvglemres 7968 qsqeqor 10744 caucvgrelemcau 11147 m1dvdsndvds 12427 pcpremul 12472 pcaddlem 12518 pockthlem 12535 issgrpd 13065 ghmf1 13413 islssmd 13925 znrrg 14226 limccnpcntop 14921 sincosq1sgn 15072 sincosq2sgn 15073 lgseisenlem2 15322 subctctexmid 15655 neap0mkv 15723 |
| Copyright terms: Public domain | W3C validator |