![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3imtr4d | GIF version |
Description: More general version of 3imtr4i 201. Useful for converting conditional definitions in a formula. (Contributed by NM, 26-Oct-1995.) |
Ref | Expression |
---|---|
3imtr4d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
3imtr4d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
3imtr4d.3 | ⊢ (𝜑 → (𝜏 ↔ 𝜒)) |
Ref | Expression |
---|---|
3imtr4d | ⊢ (𝜑 → (𝜃 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imtr4d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) | |
2 | 3imtr4d.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 3imtr4d.3 | . . 3 ⊢ (𝜑 → (𝜏 ↔ 𝜒)) | |
4 | 2, 3 | sylibrd 169 | . 2 ⊢ (𝜑 → (𝜓 → 𝜏)) |
5 | 1, 4 | sylbid 150 | 1 ⊢ (𝜑 → (𝜃 → 𝜏)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: onsucelsucr 4509 unielrel 5158 ovmpos 6000 caofrss 6109 caoftrn 6110 f1o2ndf1 6231 nnaord 6512 nnmord 6520 oviec 6643 pmss12g 6677 fiss 6978 pm54.43 7191 ltsopi 7321 lttrsr 7763 ltsosr 7765 aptisr 7780 mulextsr1 7782 axpre-mulext 7889 axltwlin 8027 axlttrn 8028 axltadd 8029 axmulgt0 8031 letr 8042 eqord1 8442 remulext1 8558 mulext1 8571 recexap 8612 prodge0 8813 lt2msq 8845 nnge1 8944 zltp1le 9309 uzss 9550 eluzp1m1 9553 xrletr 9810 ixxssixx 9904 zesq 10641 expcanlem 10697 expcan 10698 nn0opthd 10704 maxleast 11224 climshftlemg 11312 dvds1lem 11811 bezoutlemzz 12005 algcvg 12050 eucalgcvga 12060 rpexp12i 12157 crth 12226 pc2dvds 12331 pcmpt 12343 prmpwdvds 12355 1arith 12367 ercpbl 12755 insubm 12877 subginv 13046 dvdsunit 13286 subrgdvds 13361 tgss 13602 neipsm 13693 ssrest 13721 cos11 14313 lgsdir2lem4 14471 m1lgs 14491 |
Copyright terms: Public domain | W3C validator |