![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3imtr4d | GIF version |
Description: More general version of 3imtr4i 201. Useful for converting conditional definitions in a formula. (Contributed by NM, 26-Oct-1995.) |
Ref | Expression |
---|---|
3imtr4d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
3imtr4d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
3imtr4d.3 | ⊢ (𝜑 → (𝜏 ↔ 𝜒)) |
Ref | Expression |
---|---|
3imtr4d | ⊢ (𝜑 → (𝜃 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imtr4d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) | |
2 | 3imtr4d.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 3imtr4d.3 | . . 3 ⊢ (𝜑 → (𝜏 ↔ 𝜒)) | |
4 | 2, 3 | sylibrd 169 | . 2 ⊢ (𝜑 → (𝜓 → 𝜏)) |
5 | 1, 4 | sylbid 150 | 1 ⊢ (𝜑 → (𝜃 → 𝜏)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: onsucelsucr 4541 unielrel 5194 ovmpos 6043 caofrss 6159 caoftrn 6160 f1o2ndf1 6283 nnaord 6564 nnmord 6572 oviec 6697 pmss12g 6731 fiss 7038 pm54.43 7252 ltsopi 7382 lttrsr 7824 ltsosr 7826 aptisr 7841 mulextsr1 7843 axpre-mulext 7950 axltwlin 8089 axlttrn 8090 axltadd 8091 axmulgt0 8093 letr 8104 eqord1 8504 remulext1 8620 mulext1 8633 recexap 8674 prodge0 8875 lt2msq 8907 nnge1 9007 zltp1le 9374 uzss 9616 eluzp1m1 9619 xrletr 9877 ixxssixx 9971 zesq 10732 expcanlem 10789 expcan 10790 nn0opthd 10796 maxleast 11360 climshftlemg 11448 dvds1lem 11948 bezoutlemzz 12142 algcvg 12189 eucalgcvga 12199 rpexp12i 12296 crth 12365 pc2dvds 12471 pcmpt 12484 prmpwdvds 12496 1arith 12508 ercpbl 12917 insubm 13060 subginv 13254 rngpropd 13454 dvdsunit 13611 subrgdvds 13734 tgss 14242 neipsm 14333 ssrest 14361 cos11 15029 lgsdir2lem4 15188 gausslemma2dlem1a 15215 m1lgs 15242 |
Copyright terms: Public domain | W3C validator |