| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3imtr4d | GIF version | ||
| Description: More general version of 3imtr4i 201. Useful for converting conditional definitions in a formula. (Contributed by NM, 26-Oct-1995.) |
| Ref | Expression |
|---|---|
| 3imtr4d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3imtr4d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
| 3imtr4d.3 | ⊢ (𝜑 → (𝜏 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 3imtr4d | ⊢ (𝜑 → (𝜃 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imtr4d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) | |
| 2 | 3imtr4d.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 3imtr4d.3 | . . 3 ⊢ (𝜑 → (𝜏 ↔ 𝜒)) | |
| 4 | 2, 3 | sylibrd 169 | . 2 ⊢ (𝜑 → (𝜓 → 𝜏)) |
| 5 | 1, 4 | sylbid 150 | 1 ⊢ (𝜑 → (𝜃 → 𝜏)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: onsucelsucr 4599 unielrel 5255 ovmpos 6127 caofrss 6248 caoftrn 6249 f1o2ndf1 6372 nnaord 6653 nnmord 6661 oviec 6786 pmss12g 6820 fiss 7140 pm54.43 7359 ltsopi 7503 lttrsr 7945 ltsosr 7947 aptisr 7962 mulextsr1 7964 axpre-mulext 8071 axltwlin 8210 axlttrn 8211 axltadd 8212 axmulgt0 8214 letr 8225 eqord1 8626 remulext1 8742 mulext1 8755 recexap 8796 prodge0 8997 lt2msq 9029 nnge1 9129 zltp1le 9497 uzss 9739 eluzp1m1 9742 xrletr 10000 ixxssixx 10094 zesq 10875 expcanlem 10932 expcan 10933 nn0opthd 10939 wrdind 11249 wrd2ind 11250 pfxccatin12lem3 11259 maxleast 11719 climshftlemg 11808 dvds1lem 12308 bezoutlemzz 12518 algcvg 12565 eucalgcvga 12575 rpexp12i 12672 crth 12741 pc2dvds 12848 pcmpt 12861 prmpwdvds 12873 1arith 12885 ercpbl 13359 insubm 13513 subginv 13713 rngpropd 13913 dvdsunit 14070 subrgdvds 14193 tgss 14731 neipsm 14822 ssrest 14850 cos11 15521 lgsdir2lem4 15704 gausslemma2dlem1a 15731 m1lgs 15758 |
| Copyright terms: Public domain | W3C validator |