Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3imtr4d | GIF version |
Description: More general version of 3imtr4i 200. Useful for converting conditional definitions in a formula. (Contributed by NM, 26-Oct-1995.) |
Ref | Expression |
---|---|
3imtr4d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
3imtr4d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
3imtr4d.3 | ⊢ (𝜑 → (𝜏 ↔ 𝜒)) |
Ref | Expression |
---|---|
3imtr4d | ⊢ (𝜑 → (𝜃 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imtr4d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) | |
2 | 3imtr4d.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 3imtr4d.3 | . . 3 ⊢ (𝜑 → (𝜏 ↔ 𝜒)) | |
4 | 2, 3 | sylibrd 168 | . 2 ⊢ (𝜑 → (𝜓 → 𝜏)) |
5 | 1, 4 | sylbid 149 | 1 ⊢ (𝜑 → (𝜃 → 𝜏)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: onsucelsucr 4482 unielrel 5128 ovmpos 5959 caofrss 6071 caoftrn 6072 f1o2ndf1 6190 nnaord 6471 nnmord 6479 oviec 6601 pmss12g 6635 fiss 6936 pm54.43 7140 ltsopi 7255 lttrsr 7697 ltsosr 7699 aptisr 7714 mulextsr1 7716 axpre-mulext 7823 axltwlin 7960 axlttrn 7961 axltadd 7962 axmulgt0 7964 letr 7975 eqord1 8375 remulext1 8491 mulext1 8504 recexap 8544 prodge0 8743 lt2msq 8775 nnge1 8874 zltp1le 9239 uzss 9480 eluzp1m1 9483 xrletr 9738 ixxssixx 9832 zesq 10567 expcanlem 10622 expcan 10623 nn0opthd 10629 maxleast 11149 climshftlemg 11237 dvds1lem 11736 bezoutlemzz 11929 algcvg 11974 eucalgcvga 11984 rpexp12i 12081 crth 12150 pc2dvds 12255 pcmpt 12267 prmpwdvds 12279 1arith 12291 tgss 12661 neipsm 12752 ssrest 12780 cos11 13372 |
Copyright terms: Public domain | W3C validator |