| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3imtr4d | GIF version | ||
| Description: More general version of 3imtr4i 201. Useful for converting conditional definitions in a formula. (Contributed by NM, 26-Oct-1995.) |
| Ref | Expression |
|---|---|
| 3imtr4d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3imtr4d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
| 3imtr4d.3 | ⊢ (𝜑 → (𝜏 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 3imtr4d | ⊢ (𝜑 → (𝜃 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imtr4d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) | |
| 2 | 3imtr4d.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 3imtr4d.3 | . . 3 ⊢ (𝜑 → (𝜏 ↔ 𝜒)) | |
| 4 | 2, 3 | sylibrd 169 | . 2 ⊢ (𝜑 → (𝜓 → 𝜏)) |
| 5 | 1, 4 | sylbid 150 | 1 ⊢ (𝜑 → (𝜃 → 𝜏)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: onsucelsucr 4564 unielrel 5219 ovmpos 6082 caofrss 6203 caoftrn 6204 f1o2ndf1 6327 nnaord 6608 nnmord 6616 oviec 6741 pmss12g 6775 fiss 7094 pm54.43 7313 ltsopi 7453 lttrsr 7895 ltsosr 7897 aptisr 7912 mulextsr1 7914 axpre-mulext 8021 axltwlin 8160 axlttrn 8161 axltadd 8162 axmulgt0 8164 letr 8175 eqord1 8576 remulext1 8692 mulext1 8705 recexap 8746 prodge0 8947 lt2msq 8979 nnge1 9079 zltp1le 9447 uzss 9689 eluzp1m1 9692 xrletr 9950 ixxssixx 10044 zesq 10825 expcanlem 10882 expcan 10883 nn0opthd 10889 wrdind 11198 wrd2ind 11199 maxleast 11599 climshftlemg 11688 dvds1lem 12188 bezoutlemzz 12398 algcvg 12445 eucalgcvga 12455 rpexp12i 12552 crth 12621 pc2dvds 12728 pcmpt 12741 prmpwdvds 12753 1arith 12765 ercpbl 13238 insubm 13392 subginv 13592 rngpropd 13792 dvdsunit 13949 subrgdvds 14072 tgss 14610 neipsm 14701 ssrest 14729 cos11 15400 lgsdir2lem4 15583 gausslemma2dlem1a 15610 m1lgs 15637 |
| Copyright terms: Public domain | W3C validator |