| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3imtr4d | GIF version | ||
| Description: More general version of 3imtr4i 201. Useful for converting conditional definitions in a formula. (Contributed by NM, 26-Oct-1995.) |
| Ref | Expression |
|---|---|
| 3imtr4d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3imtr4d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
| 3imtr4d.3 | ⊢ (𝜑 → (𝜏 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 3imtr4d | ⊢ (𝜑 → (𝜃 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imtr4d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) | |
| 2 | 3imtr4d.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 3imtr4d.3 | . . 3 ⊢ (𝜑 → (𝜏 ↔ 𝜒)) | |
| 4 | 2, 3 | sylibrd 169 | . 2 ⊢ (𝜑 → (𝜓 → 𝜏)) |
| 5 | 1, 4 | sylbid 150 | 1 ⊢ (𝜑 → (𝜃 → 𝜏)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: onsucelsucr 4545 unielrel 5198 ovmpos 6050 caofrss 6171 caoftrn 6172 f1o2ndf1 6295 nnaord 6576 nnmord 6584 oviec 6709 pmss12g 6743 fiss 7052 pm54.43 7271 ltsopi 7406 lttrsr 7848 ltsosr 7850 aptisr 7865 mulextsr1 7867 axpre-mulext 7974 axltwlin 8113 axlttrn 8114 axltadd 8115 axmulgt0 8117 letr 8128 eqord1 8529 remulext1 8645 mulext1 8658 recexap 8699 prodge0 8900 lt2msq 8932 nnge1 9032 zltp1le 9399 uzss 9641 eluzp1m1 9644 xrletr 9902 ixxssixx 9996 zesq 10769 expcanlem 10826 expcan 10827 nn0opthd 10833 maxleast 11397 climshftlemg 11486 dvds1lem 11986 bezoutlemzz 12196 algcvg 12243 eucalgcvga 12253 rpexp12i 12350 crth 12419 pc2dvds 12526 pcmpt 12539 prmpwdvds 12551 1arith 12563 ercpbl 13035 insubm 13189 subginv 13389 rngpropd 13589 dvdsunit 13746 subrgdvds 13869 tgss 14407 neipsm 14498 ssrest 14526 cos11 15197 lgsdir2lem4 15380 gausslemma2dlem1a 15407 m1lgs 15434 |
| Copyright terms: Public domain | W3C validator |