ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3imtr4d GIF version

Theorem 3imtr4d 202
Description: More general version of 3imtr4i 200. Useful for converting conditional definitions in a formula. (Contributed by NM, 26-Oct-1995.)
Hypotheses
Ref Expression
3imtr4d.1 (𝜑 → (𝜓𝜒))
3imtr4d.2 (𝜑 → (𝜃𝜓))
3imtr4d.3 (𝜑 → (𝜏𝜒))
Assertion
Ref Expression
3imtr4d (𝜑 → (𝜃𝜏))

Proof of Theorem 3imtr4d
StepHypRef Expression
1 3imtr4d.2 . 2 (𝜑 → (𝜃𝜓))
2 3imtr4d.1 . . 3 (𝜑 → (𝜓𝜒))
3 3imtr4d.3 . . 3 (𝜑 → (𝜏𝜒))
42, 3sylibrd 168 . 2 (𝜑 → (𝜓𝜏))
51, 4sylbid 149 1 (𝜑 → (𝜃𝜏))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  onsucelsucr  4482  unielrel  5128  ovmpos  5959  caofrss  6071  caoftrn  6072  f1o2ndf1  6190  nnaord  6471  nnmord  6479  oviec  6601  pmss12g  6635  fiss  6936  pm54.43  7140  ltsopi  7255  lttrsr  7697  ltsosr  7699  aptisr  7714  mulextsr1  7716  axpre-mulext  7823  axltwlin  7960  axlttrn  7961  axltadd  7962  axmulgt0  7964  letr  7975  eqord1  8375  remulext1  8491  mulext1  8504  recexap  8544  prodge0  8743  lt2msq  8775  nnge1  8874  zltp1le  9239  uzss  9480  eluzp1m1  9483  xrletr  9738  ixxssixx  9832  zesq  10567  expcanlem  10622  expcan  10623  nn0opthd  10629  maxleast  11149  climshftlemg  11237  dvds1lem  11736  bezoutlemzz  11929  algcvg  11974  eucalgcvga  11984  rpexp12i  12081  crth  12150  pc2dvds  12255  pcmpt  12267  prmpwdvds  12279  1arith  12291  tgss  12661  neipsm  12752  ssrest  12780  cos11  13372
  Copyright terms: Public domain W3C validator