Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3imtr4d | GIF version |
Description: More general version of 3imtr4i 200. Useful for converting conditional definitions in a formula. (Contributed by NM, 26-Oct-1995.) |
Ref | Expression |
---|---|
3imtr4d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
3imtr4d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
3imtr4d.3 | ⊢ (𝜑 → (𝜏 ↔ 𝜒)) |
Ref | Expression |
---|---|
3imtr4d | ⊢ (𝜑 → (𝜃 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imtr4d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) | |
2 | 3imtr4d.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 3imtr4d.3 | . . 3 ⊢ (𝜑 → (𝜏 ↔ 𝜒)) | |
4 | 2, 3 | sylibrd 168 | . 2 ⊢ (𝜑 → (𝜓 → 𝜏)) |
5 | 1, 4 | sylbid 149 | 1 ⊢ (𝜑 → (𝜃 → 𝜏)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: onsucelsucr 4485 unielrel 5131 ovmpos 5965 caofrss 6074 caoftrn 6075 f1o2ndf1 6196 nnaord 6477 nnmord 6485 oviec 6607 pmss12g 6641 fiss 6942 pm54.43 7146 ltsopi 7261 lttrsr 7703 ltsosr 7705 aptisr 7720 mulextsr1 7722 axpre-mulext 7829 axltwlin 7966 axlttrn 7967 axltadd 7968 axmulgt0 7970 letr 7981 eqord1 8381 remulext1 8497 mulext1 8510 recexap 8550 prodge0 8749 lt2msq 8781 nnge1 8880 zltp1le 9245 uzss 9486 eluzp1m1 9489 xrletr 9744 ixxssixx 9838 zesq 10573 expcanlem 10628 expcan 10629 nn0opthd 10635 maxleast 11155 climshftlemg 11243 dvds1lem 11742 bezoutlemzz 11935 algcvg 11980 eucalgcvga 11990 rpexp12i 12087 crth 12156 pc2dvds 12261 pcmpt 12273 prmpwdvds 12285 1arith 12297 tgss 12713 neipsm 12804 ssrest 12832 cos11 13424 lgsdir2lem4 13582 |
Copyright terms: Public domain | W3C validator |