| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3imtr4d | GIF version | ||
| Description: More general version of 3imtr4i 201. Useful for converting conditional definitions in a formula. (Contributed by NM, 26-Oct-1995.) |
| Ref | Expression |
|---|---|
| 3imtr4d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3imtr4d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
| 3imtr4d.3 | ⊢ (𝜑 → (𝜏 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 3imtr4d | ⊢ (𝜑 → (𝜃 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imtr4d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) | |
| 2 | 3imtr4d.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 3imtr4d.3 | . . 3 ⊢ (𝜑 → (𝜏 ↔ 𝜒)) | |
| 4 | 2, 3 | sylibrd 169 | . 2 ⊢ (𝜑 → (𝜓 → 𝜏)) |
| 5 | 1, 4 | sylbid 150 | 1 ⊢ (𝜑 → (𝜃 → 𝜏)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: onsucelsucr 4554 unielrel 5207 ovmpos 6059 caofrss 6180 caoftrn 6181 f1o2ndf1 6304 nnaord 6585 nnmord 6593 oviec 6718 pmss12g 6752 fiss 7061 pm54.43 7280 ltsopi 7415 lttrsr 7857 ltsosr 7859 aptisr 7874 mulextsr1 7876 axpre-mulext 7983 axltwlin 8122 axlttrn 8123 axltadd 8124 axmulgt0 8126 letr 8137 eqord1 8538 remulext1 8654 mulext1 8667 recexap 8708 prodge0 8909 lt2msq 8941 nnge1 9041 zltp1le 9409 uzss 9651 eluzp1m1 9654 xrletr 9912 ixxssixx 10006 zesq 10784 expcanlem 10841 expcan 10842 nn0opthd 10848 maxleast 11443 climshftlemg 11532 dvds1lem 12032 bezoutlemzz 12242 algcvg 12289 eucalgcvga 12299 rpexp12i 12396 crth 12465 pc2dvds 12572 pcmpt 12585 prmpwdvds 12597 1arith 12609 ercpbl 13081 insubm 13235 subginv 13435 rngpropd 13635 dvdsunit 13792 subrgdvds 13915 tgss 14453 neipsm 14544 ssrest 14572 cos11 15243 lgsdir2lem4 15426 gausslemma2dlem1a 15453 m1lgs 15480 |
| Copyright terms: Public domain | W3C validator |