ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3imtr3d Unicode version

Theorem 3imtr3d 202
Description: More general version of 3imtr3i 200. Useful for converting conditional definitions in a formula. (Contributed by NM, 8-Apr-1996.)
Hypotheses
Ref Expression
3imtr3d.1  |-  ( ph  ->  ( ps  ->  ch ) )
3imtr3d.2  |-  ( ph  ->  ( ps  <->  th )
)
3imtr3d.3  |-  ( ph  ->  ( ch  <->  ta )
)
Assertion
Ref Expression
3imtr3d  |-  ( ph  ->  ( th  ->  ta ) )

Proof of Theorem 3imtr3d
StepHypRef Expression
1 3imtr3d.2 . 2  |-  ( ph  ->  ( ps  <->  th )
)
2 3imtr3d.1 . . 3  |-  ( ph  ->  ( ps  ->  ch ) )
3 3imtr3d.3 . . 3  |-  ( ph  ->  ( ch  <->  ta )
)
42, 3sylibd 149 . 2  |-  ( ph  ->  ( ps  ->  ta ) )
51, 4sylbird 170 1  |-  ( ph  ->  ( th  ->  ta ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  f1imass  5824  focdmex  6181  tposfn2  6333  eroveu  6694  ismkvnex  7230  indpi  7426  axcaucvglemres  7983  qsqeqor  10759  caucvgrelemcau  11162  m1dvdsndvds  12442  pcpremul  12487  pcaddlem  12533  pockthlem  12550  issgrpd  13114  ghmf1  13479  islssmd  13991  znrrg  14292  limccnpcntop  14995  sincosq1sgn  15146  sincosq2sgn  15147  lgseisenlem2  15396  subctctexmid  15731  neap0mkv  15800
  Copyright terms: Public domain W3C validator