Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3imtr3d | Unicode version |
Description: More general version of 3imtr3i 199. Useful for converting conditional definitions in a formula. (Contributed by NM, 8-Apr-1996.) |
Ref | Expression |
---|---|
3imtr3d.1 | |
3imtr3d.2 | |
3imtr3d.3 |
Ref | Expression |
---|---|
3imtr3d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imtr3d.2 | . 2 | |
2 | 3imtr3d.1 | . . 3 | |
3 | 3imtr3d.3 | . . 3 | |
4 | 2, 3 | sylibd 148 | . 2 |
5 | 1, 4 | sylbird 169 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: f1imass 5753 fornex 6094 tposfn2 6245 eroveu 6604 ismkvnex 7131 indpi 7304 axcaucvglemres 7861 qsqeqor 10586 caucvgrelemcau 10944 m1dvdsndvds 12202 pcpremul 12247 pcaddlem 12292 pockthlem 12308 limccnpcntop 13438 sincosq1sgn 13541 sincosq2sgn 13542 subctctexmid 14034 |
Copyright terms: Public domain | W3C validator |