| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3imtr3d | Unicode version | ||
| Description: More general version of 3imtr3i 200. Useful for converting conditional definitions in a formula. (Contributed by NM, 8-Apr-1996.) |
| Ref | Expression |
|---|---|
| 3imtr3d.1 |
|
| 3imtr3d.2 |
|
| 3imtr3d.3 |
|
| Ref | Expression |
|---|---|
| 3imtr3d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imtr3d.2 |
. 2
| |
| 2 | 3imtr3d.1 |
. . 3
| |
| 3 | 3imtr3d.3 |
. . 3
| |
| 4 | 2, 3 | sylibd 149 |
. 2
|
| 5 | 1, 4 | sylbird 170 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: f1imass 5842 focdmex 6199 tposfn2 6351 eroveu 6712 ismkvnex 7256 indpi 7454 axcaucvglemres 8011 qsqeqor 10793 caucvgrelemcau 11262 m1dvdsndvds 12542 pcpremul 12587 pcaddlem 12633 pockthlem 12650 issgrpd 13215 ghmf1 13580 islssmd 14092 znrrg 14393 limccnpcntop 15118 sincosq1sgn 15269 sincosq2sgn 15270 lgseisenlem2 15519 subctctexmid 15899 neap0mkv 15970 |
| Copyright terms: Public domain | W3C validator |