Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3imtr3d | Unicode version |
Description: More general version of 3imtr3i 199. Useful for converting conditional definitions in a formula. (Contributed by NM, 8-Apr-1996.) |
Ref | Expression |
---|---|
3imtr3d.1 | |
3imtr3d.2 | |
3imtr3d.3 |
Ref | Expression |
---|---|
3imtr3d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imtr3d.2 | . 2 | |
2 | 3imtr3d.1 | . . 3 | |
3 | 3imtr3d.3 | . . 3 | |
4 | 2, 3 | sylibd 148 | . 2 |
5 | 1, 4 | sylbird 169 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: f1imass 5726 fornex 6065 tposfn2 6215 eroveu 6573 ismkvnex 7100 indpi 7264 axcaucvglemres 7821 caucvgrelemcau 10891 m1dvdsndvds 12138 pcpremul 12183 limccnpcntop 13114 sincosq1sgn 13217 sincosq2sgn 13218 subctctexmid 13644 |
Copyright terms: Public domain | W3C validator |