ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3imtr3d Unicode version

Theorem 3imtr3d 202
Description: More general version of 3imtr3i 200. Useful for converting conditional definitions in a formula. (Contributed by NM, 8-Apr-1996.)
Hypotheses
Ref Expression
3imtr3d.1  |-  ( ph  ->  ( ps  ->  ch ) )
3imtr3d.2  |-  ( ph  ->  ( ps  <->  th )
)
3imtr3d.3  |-  ( ph  ->  ( ch  <->  ta )
)
Assertion
Ref Expression
3imtr3d  |-  ( ph  ->  ( th  ->  ta ) )

Proof of Theorem 3imtr3d
StepHypRef Expression
1 3imtr3d.2 . 2  |-  ( ph  ->  ( ps  <->  th )
)
2 3imtr3d.1 . . 3  |-  ( ph  ->  ( ps  ->  ch ) )
3 3imtr3d.3 . . 3  |-  ( ph  ->  ( ch  <->  ta )
)
42, 3sylibd 149 . 2  |-  ( ph  ->  ( ps  ->  ta ) )
51, 4sylbird 170 1  |-  ( ph  ->  ( th  ->  ta ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  f1imass  5778  focdmex  6119  tposfn2  6270  eroveu  6629  ismkvnex  7156  indpi  7344  axcaucvglemres  7901  qsqeqor  10634  caucvgrelemcau  10992  m1dvdsndvds  12251  pcpremul  12296  pcaddlem  12341  pockthlem  12357  islssmd  13452  limccnpcntop  14284  sincosq1sgn  14387  sincosq2sgn  14388  lgseisenlem2  14591  subctctexmid  14890  neap0mkv  14957
  Copyright terms: Public domain W3C validator