| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3imtr3d | Unicode version | ||
| Description: More general version of 3imtr3i 200. Useful for converting conditional definitions in a formula. (Contributed by NM, 8-Apr-1996.) |
| Ref | Expression |
|---|---|
| 3imtr3d.1 |
|
| 3imtr3d.2 |
|
| 3imtr3d.3 |
|
| Ref | Expression |
|---|---|
| 3imtr3d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imtr3d.2 |
. 2
| |
| 2 | 3imtr3d.1 |
. . 3
| |
| 3 | 3imtr3d.3 |
. . 3
| |
| 4 | 2, 3 | sylibd 149 |
. 2
|
| 5 | 1, 4 | sylbird 170 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: f1imass 5824 focdmex 6181 tposfn2 6333 eroveu 6694 ismkvnex 7230 indpi 7426 axcaucvglemres 7983 qsqeqor 10759 caucvgrelemcau 11162 m1dvdsndvds 12442 pcpremul 12487 pcaddlem 12533 pockthlem 12550 issgrpd 13114 ghmf1 13479 islssmd 13991 znrrg 14292 limccnpcntop 14995 sincosq1sgn 15146 sincosq2sgn 15147 lgseisenlem2 15396 subctctexmid 15731 neap0mkv 15800 |
| Copyright terms: Public domain | W3C validator |