| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3imtr3d | Unicode version | ||
| Description: More general version of 3imtr3i 200. Useful for converting conditional definitions in a formula. (Contributed by NM, 8-Apr-1996.) |
| Ref | Expression |
|---|---|
| 3imtr3d.1 |
|
| 3imtr3d.2 |
|
| 3imtr3d.3 |
|
| Ref | Expression |
|---|---|
| 3imtr3d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imtr3d.2 |
. 2
| |
| 2 | 3imtr3d.1 |
. . 3
| |
| 3 | 3imtr3d.3 |
. . 3
| |
| 4 | 2, 3 | sylibd 149 |
. 2
|
| 5 | 1, 4 | sylbird 170 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: f1imass 5866 focdmex 6223 tposfn2 6375 eroveu 6736 ismkvnex 7283 indpi 7490 axcaucvglemres 8047 qsqeqor 10832 caucvgrelemcau 11406 m1dvdsndvds 12686 pcpremul 12731 pcaddlem 12777 pockthlem 12794 issgrpd 13359 ghmf1 13724 islssmd 14236 znrrg 14537 limccnpcntop 15262 sincosq1sgn 15413 sincosq2sgn 15414 lgseisenlem2 15663 subctctexmid 16139 neap0mkv 16210 |
| Copyright terms: Public domain | W3C validator |