ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3imtr3d Unicode version

Theorem 3imtr3d 202
Description: More general version of 3imtr3i 200. Useful for converting conditional definitions in a formula. (Contributed by NM, 8-Apr-1996.)
Hypotheses
Ref Expression
3imtr3d.1  |-  ( ph  ->  ( ps  ->  ch ) )
3imtr3d.2  |-  ( ph  ->  ( ps  <->  th )
)
3imtr3d.3  |-  ( ph  ->  ( ch  <->  ta )
)
Assertion
Ref Expression
3imtr3d  |-  ( ph  ->  ( th  ->  ta ) )

Proof of Theorem 3imtr3d
StepHypRef Expression
1 3imtr3d.2 . 2  |-  ( ph  ->  ( ps  <->  th )
)
2 3imtr3d.1 . . 3  |-  ( ph  ->  ( ps  ->  ch ) )
3 3imtr3d.3 . . 3  |-  ( ph  ->  ( ch  <->  ta )
)
42, 3sylibd 149 . 2  |-  ( ph  ->  ( ps  ->  ta ) )
51, 4sylbird 170 1  |-  ( ph  ->  ( th  ->  ta ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  f1imass  5842  focdmex  6199  tposfn2  6351  eroveu  6712  ismkvnex  7256  indpi  7454  axcaucvglemres  8011  qsqeqor  10793  caucvgrelemcau  11262  m1dvdsndvds  12542  pcpremul  12587  pcaddlem  12633  pockthlem  12650  issgrpd  13215  ghmf1  13580  islssmd  14092  znrrg  14393  limccnpcntop  15118  sincosq1sgn  15269  sincosq2sgn  15270  lgseisenlem2  15519  subctctexmid  15899  neap0mkv  15970
  Copyright terms: Public domain W3C validator