| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3imtr3d | Unicode version | ||
| Description: More general version of 3imtr3i 200. Useful for converting conditional definitions in a formula. (Contributed by NM, 8-Apr-1996.) |
| Ref | Expression |
|---|---|
| 3imtr3d.1 |
|
| 3imtr3d.2 |
|
| 3imtr3d.3 |
|
| Ref | Expression |
|---|---|
| 3imtr3d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imtr3d.2 |
. 2
| |
| 2 | 3imtr3d.1 |
. . 3
| |
| 3 | 3imtr3d.3 |
. . 3
| |
| 4 | 2, 3 | sylibd 149 |
. 2
|
| 5 | 1, 4 | sylbird 170 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: f1imass 5897 focdmex 6258 tposfn2 6410 eroveu 6771 ismkvnex 7318 indpi 7525 axcaucvglemres 8082 qsqeqor 10867 caucvgrelemcau 11486 m1dvdsndvds 12766 pcpremul 12811 pcaddlem 12857 pockthlem 12874 issgrpd 13440 ghmf1 13805 islssmd 14317 znrrg 14618 limccnpcntop 15343 sincosq1sgn 15494 sincosq2sgn 15495 lgseisenlem2 15744 subctctexmid 16325 neap0mkv 16396 |
| Copyright terms: Public domain | W3C validator |