| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3imtr3d | Unicode version | ||
| Description: More general version of 3imtr3i 200. Useful for converting conditional definitions in a formula. (Contributed by NM, 8-Apr-1996.) |
| Ref | Expression |
|---|---|
| 3imtr3d.1 |
|
| 3imtr3d.2 |
|
| 3imtr3d.3 |
|
| Ref | Expression |
|---|---|
| 3imtr3d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imtr3d.2 |
. 2
| |
| 2 | 3imtr3d.1 |
. . 3
| |
| 3 | 3imtr3d.3 |
. . 3
| |
| 4 | 2, 3 | sylibd 149 |
. 2
|
| 5 | 1, 4 | sylbird 170 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: f1imass 5843 focdmex 6200 tposfn2 6352 eroveu 6713 ismkvnex 7257 indpi 7455 axcaucvglemres 8012 qsqeqor 10795 caucvgrelemcau 11291 m1dvdsndvds 12571 pcpremul 12616 pcaddlem 12662 pockthlem 12679 issgrpd 13244 ghmf1 13609 islssmd 14121 znrrg 14422 limccnpcntop 15147 sincosq1sgn 15298 sincosq2sgn 15299 lgseisenlem2 15548 subctctexmid 15937 neap0mkv 16008 |
| Copyright terms: Public domain | W3C validator |