Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  3imtr3d Unicode version

Theorem 3imtr3d 201
 Description: More general version of 3imtr3i 199. Useful for converting conditional definitions in a formula. (Contributed by NM, 8-Apr-1996.)
Hypotheses
Ref Expression
3imtr3d.1
3imtr3d.2
3imtr3d.3
Assertion
Ref Expression
3imtr3d

Proof of Theorem 3imtr3d
StepHypRef Expression
1 3imtr3d.2 . 2
2 3imtr3d.1 . . 3
3 3imtr3d.3 . . 3
42, 3sylibd 148 . 2
51, 4sylbird 169 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 104 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107 This theorem depends on definitions:  df-bi 116 This theorem is referenced by:  f1imass  5668  fornex  6006  tposfn2  6156  eroveu  6513  ismkvnex  7022  indpi  7143  axcaucvglemres  7700  caucvgrelemcau  10745  limccnpcntop  12802  sincosq1sgn  12896  sincosq2sgn  12897  subctctexmid  13185
 Copyright terms: Public domain W3C validator