ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qsqeqor GIF version

Theorem qsqeqor 10759
Description: The squares of two rational numbers are equal iff one number equals the other or its negative. (Contributed by Jim Kingdon, 1-Nov-2024.)
Assertion
Ref Expression
qsqeqor ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → ((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵𝐴 = -𝐵)))

Proof of Theorem qsqeqor
StepHypRef Expression
1 qre 9716 . . . . . . 7 (𝐴 ∈ ℚ → 𝐴 ∈ ℝ)
21ad3antrrr 492 . . . . . 6 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 0 ≤ 𝐴) ∧ 0 ≤ 𝐵) → 𝐴 ∈ ℝ)
3 simplr 528 . . . . . 6 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 0 ≤ 𝐴) ∧ 0 ≤ 𝐵) → 0 ≤ 𝐴)
4 qre 9716 . . . . . . 7 (𝐵 ∈ ℚ → 𝐵 ∈ ℝ)
54ad3antlr 493 . . . . . 6 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 0 ≤ 𝐴) ∧ 0 ≤ 𝐵) → 𝐵 ∈ ℝ)
6 simpr 110 . . . . . 6 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 0 ≤ 𝐴) ∧ 0 ≤ 𝐵) → 0 ≤ 𝐵)
7 sq11 10721 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴↑2) = (𝐵↑2) ↔ 𝐴 = 𝐵))
82, 3, 5, 6, 7syl22anc 1250 . . . . 5 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 0 ≤ 𝐴) ∧ 0 ≤ 𝐵) → ((𝐴↑2) = (𝐵↑2) ↔ 𝐴 = 𝐵))
9 orc 713 . . . . 5 (𝐴 = 𝐵 → (𝐴 = 𝐵𝐴 = -𝐵))
108, 9biimtrdi 163 . . . 4 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 0 ≤ 𝐴) ∧ 0 ≤ 𝐵) → ((𝐴↑2) = (𝐵↑2) → (𝐴 = 𝐵𝐴 = -𝐵)))
11 oveq1 5932 . . . . . . 7 (𝐴 = 𝐵 → (𝐴↑2) = (𝐵↑2))
1211a1i 9 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 = 𝐵 → (𝐴↑2) = (𝐵↑2)))
13 oveq1 5932 . . . . . . . . 9 (𝐴 = -𝐵 → (𝐴↑2) = (-𝐵↑2))
1413adantl 277 . . . . . . . 8 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 = -𝐵) → (𝐴↑2) = (-𝐵↑2))
15 qcn 9725 . . . . . . . . . 10 (𝐵 ∈ ℚ → 𝐵 ∈ ℂ)
16 sqneg 10707 . . . . . . . . . 10 (𝐵 ∈ ℂ → (-𝐵↑2) = (𝐵↑2))
1715, 16syl 14 . . . . . . . . 9 (𝐵 ∈ ℚ → (-𝐵↑2) = (𝐵↑2))
1817ad2antlr 489 . . . . . . . 8 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 = -𝐵) → (-𝐵↑2) = (𝐵↑2))
1914, 18eqtrd 2229 . . . . . . 7 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 = -𝐵) → (𝐴↑2) = (𝐵↑2))
2019ex 115 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 = -𝐵 → (𝐴↑2) = (𝐵↑2)))
2112, 20jaod 718 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → ((𝐴 = 𝐵𝐴 = -𝐵) → (𝐴↑2) = (𝐵↑2)))
2221ad2antrr 488 . . . 4 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 0 ≤ 𝐴) ∧ 0 ≤ 𝐵) → ((𝐴 = 𝐵𝐴 = -𝐵) → (𝐴↑2) = (𝐵↑2)))
2310, 22impbid 129 . . 3 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 0 ≤ 𝐴) ∧ 0 ≤ 𝐵) → ((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵𝐴 = -𝐵)))
2417eqeq2d 2208 . . . . . 6 (𝐵 ∈ ℚ → ((𝐴↑2) = (-𝐵↑2) ↔ (𝐴↑2) = (𝐵↑2)))
2524ad3antlr 493 . . . . 5 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 0 ≤ 𝐴) ∧ 𝐵 ≤ 0) → ((𝐴↑2) = (-𝐵↑2) ↔ (𝐴↑2) = (𝐵↑2)))
261ad3antrrr 492 . . . . . . 7 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 0 ≤ 𝐴) ∧ 𝐵 ≤ 0) → 𝐴 ∈ ℝ)
27 simplr 528 . . . . . . 7 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 0 ≤ 𝐴) ∧ 𝐵 ≤ 0) → 0 ≤ 𝐴)
28 qnegcl 9727 . . . . . . . . 9 (𝐵 ∈ ℚ → -𝐵 ∈ ℚ)
29 qre 9716 . . . . . . . . 9 (-𝐵 ∈ ℚ → -𝐵 ∈ ℝ)
3028, 29syl 14 . . . . . . . 8 (𝐵 ∈ ℚ → -𝐵 ∈ ℝ)
3130ad3antlr 493 . . . . . . 7 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 0 ≤ 𝐴) ∧ 𝐵 ≤ 0) → -𝐵 ∈ ℝ)
32 simpr 110 . . . . . . . 8 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 0 ≤ 𝐴) ∧ 𝐵 ≤ 0) → 𝐵 ≤ 0)
334le0neg1d 8561 . . . . . . . . 9 (𝐵 ∈ ℚ → (𝐵 ≤ 0 ↔ 0 ≤ -𝐵))
3433ad3antlr 493 . . . . . . . 8 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 0 ≤ 𝐴) ∧ 𝐵 ≤ 0) → (𝐵 ≤ 0 ↔ 0 ≤ -𝐵))
3532, 34mpbid 147 . . . . . . 7 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 0 ≤ 𝐴) ∧ 𝐵 ≤ 0) → 0 ≤ -𝐵)
36 sq11 10721 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (-𝐵 ∈ ℝ ∧ 0 ≤ -𝐵)) → ((𝐴↑2) = (-𝐵↑2) ↔ 𝐴 = -𝐵))
3726, 27, 31, 35, 36syl22anc 1250 . . . . . 6 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 0 ≤ 𝐴) ∧ 𝐵 ≤ 0) → ((𝐴↑2) = (-𝐵↑2) ↔ 𝐴 = -𝐵))
38 olc 712 . . . . . 6 (𝐴 = -𝐵 → (𝐴 = 𝐵𝐴 = -𝐵))
3937, 38biimtrdi 163 . . . . 5 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 0 ≤ 𝐴) ∧ 𝐵 ≤ 0) → ((𝐴↑2) = (-𝐵↑2) → (𝐴 = 𝐵𝐴 = -𝐵)))
4025, 39sylbird 170 . . . 4 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 0 ≤ 𝐴) ∧ 𝐵 ≤ 0) → ((𝐴↑2) = (𝐵↑2) → (𝐴 = 𝐵𝐴 = -𝐵)))
4121ad2antrr 488 . . . 4 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 0 ≤ 𝐴) ∧ 𝐵 ≤ 0) → ((𝐴 = 𝐵𝐴 = -𝐵) → (𝐴↑2) = (𝐵↑2)))
4240, 41impbid 129 . . 3 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 0 ≤ 𝐴) ∧ 𝐵 ≤ 0) → ((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵𝐴 = -𝐵)))
43 0z 9354 . . . . . 6 0 ∈ ℤ
44 zq 9717 . . . . . 6 (0 ∈ ℤ → 0 ∈ ℚ)
4543, 44ax-mp 5 . . . . 5 0 ∈ ℚ
46 qletric 10348 . . . . 5 ((0 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (0 ≤ 𝐵𝐵 ≤ 0))
4745, 46mpan 424 . . . 4 (𝐵 ∈ ℚ → (0 ≤ 𝐵𝐵 ≤ 0))
4847ad2antlr 489 . . 3 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 0 ≤ 𝐴) → (0 ≤ 𝐵𝐵 ≤ 0))
4923, 42, 48mpjaodan 799 . 2 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 0 ≤ 𝐴) → ((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵𝐴 = -𝐵)))
50 qnegcl 9727 . . . . . . . . . 10 (𝐴 ∈ ℚ → -𝐴 ∈ ℚ)
51 qre 9716 . . . . . . . . . 10 (-𝐴 ∈ ℚ → -𝐴 ∈ ℝ)
5250, 51syl 14 . . . . . . . . 9 (𝐴 ∈ ℚ → -𝐴 ∈ ℝ)
5352ad3antrrr 492 . . . . . . . 8 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 0 ≤ 𝐵) → -𝐴 ∈ ℝ)
54 simplr 528 . . . . . . . . 9 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 0 ≤ 𝐵) → 𝐴 ≤ 0)
551le0neg1d 8561 . . . . . . . . . 10 (𝐴 ∈ ℚ → (𝐴 ≤ 0 ↔ 0 ≤ -𝐴))
5655ad3antrrr 492 . . . . . . . . 9 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 0 ≤ 𝐵) → (𝐴 ≤ 0 ↔ 0 ≤ -𝐴))
5754, 56mpbid 147 . . . . . . . 8 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 0 ≤ 𝐵) → 0 ≤ -𝐴)
584ad3antlr 493 . . . . . . . 8 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 0 ≤ 𝐵) → 𝐵 ∈ ℝ)
59 simpr 110 . . . . . . . 8 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 0 ≤ 𝐵) → 0 ≤ 𝐵)
60 sq11 10721 . . . . . . . 8 (((-𝐴 ∈ ℝ ∧ 0 ≤ -𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((-𝐴↑2) = (𝐵↑2) ↔ -𝐴 = 𝐵))
6153, 57, 58, 59, 60syl22anc 1250 . . . . . . 7 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 0 ≤ 𝐵) → ((-𝐴↑2) = (𝐵↑2) ↔ -𝐴 = 𝐵))
6261biimpd 144 . . . . . 6 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 0 ≤ 𝐵) → ((-𝐴↑2) = (𝐵↑2) → -𝐴 = 𝐵))
63 qcn 9725 . . . . . . . . . 10 (𝐴 ∈ ℚ → 𝐴 ∈ ℂ)
64 sqneg 10707 . . . . . . . . . 10 (𝐴 ∈ ℂ → (-𝐴↑2) = (𝐴↑2))
6563, 64syl 14 . . . . . . . . 9 (𝐴 ∈ ℚ → (-𝐴↑2) = (𝐴↑2))
6665adantr 276 . . . . . . . 8 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (-𝐴↑2) = (𝐴↑2))
6766eqeq1d 2205 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → ((-𝐴↑2) = (𝐵↑2) ↔ (𝐴↑2) = (𝐵↑2)))
6867ad2antrr 488 . . . . . 6 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 0 ≤ 𝐵) → ((-𝐴↑2) = (𝐵↑2) ↔ (𝐴↑2) = (𝐵↑2)))
69 negcon1 8295 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 = 𝐵 ↔ -𝐵 = 𝐴))
7063, 15, 69syl2an 289 . . . . . . . 8 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (-𝐴 = 𝐵 ↔ -𝐵 = 𝐴))
71 eqcom 2198 . . . . . . . 8 (-𝐵 = 𝐴𝐴 = -𝐵)
7270, 71bitrdi 196 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (-𝐴 = 𝐵𝐴 = -𝐵))
7372ad2antrr 488 . . . . . 6 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 0 ≤ 𝐵) → (-𝐴 = 𝐵𝐴 = -𝐵))
7462, 68, 733imtr3d 202 . . . . 5 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 0 ≤ 𝐵) → ((𝐴↑2) = (𝐵↑2) → 𝐴 = -𝐵))
7574, 38syl6 33 . . . 4 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 0 ≤ 𝐵) → ((𝐴↑2) = (𝐵↑2) → (𝐴 = 𝐵𝐴 = -𝐵)))
7621ad2antrr 488 . . . 4 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 0 ≤ 𝐵) → ((𝐴 = 𝐵𝐴 = -𝐵) → (𝐴↑2) = (𝐵↑2)))
7775, 76impbid 129 . . 3 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 0 ≤ 𝐵) → ((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵𝐴 = -𝐵)))
7852ad3antrrr 492 . . . . . . 7 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 𝐵 ≤ 0) → -𝐴 ∈ ℝ)
79 simplr 528 . . . . . . . 8 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 𝐵 ≤ 0) → 𝐴 ≤ 0)
8055ad3antrrr 492 . . . . . . . 8 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 𝐵 ≤ 0) → (𝐴 ≤ 0 ↔ 0 ≤ -𝐴))
8179, 80mpbid 147 . . . . . . 7 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 𝐵 ≤ 0) → 0 ≤ -𝐴)
8230ad3antlr 493 . . . . . . 7 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 𝐵 ≤ 0) → -𝐵 ∈ ℝ)
83 simpr 110 . . . . . . . 8 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 𝐵 ≤ 0) → 𝐵 ≤ 0)
8433ad3antlr 493 . . . . . . . 8 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 𝐵 ≤ 0) → (𝐵 ≤ 0 ↔ 0 ≤ -𝐵))
8583, 84mpbid 147 . . . . . . 7 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 𝐵 ≤ 0) → 0 ≤ -𝐵)
86 sq11 10721 . . . . . . 7 (((-𝐴 ∈ ℝ ∧ 0 ≤ -𝐴) ∧ (-𝐵 ∈ ℝ ∧ 0 ≤ -𝐵)) → ((-𝐴↑2) = (-𝐵↑2) ↔ -𝐴 = -𝐵))
8778, 81, 82, 85, 86syl22anc 1250 . . . . . 6 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 𝐵 ≤ 0) → ((-𝐴↑2) = (-𝐵↑2) ↔ -𝐴 = -𝐵))
8865, 17eqeqan12d 2212 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → ((-𝐴↑2) = (-𝐵↑2) ↔ (𝐴↑2) = (𝐵↑2)))
8988ad2antrr 488 . . . . . 6 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 𝐵 ≤ 0) → ((-𝐴↑2) = (-𝐵↑2) ↔ (𝐴↑2) = (𝐵↑2)))
9063ad3antrrr 492 . . . . . . 7 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 𝐵 ≤ 0) → 𝐴 ∈ ℂ)
9115ad3antlr 493 . . . . . . 7 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 𝐵 ≤ 0) → 𝐵 ∈ ℂ)
9290, 91neg11ad 8350 . . . . . 6 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 𝐵 ≤ 0) → (-𝐴 = -𝐵𝐴 = 𝐵))
9387, 89, 923bitr3d 218 . . . . 5 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 𝐵 ≤ 0) → ((𝐴↑2) = (𝐵↑2) ↔ 𝐴 = 𝐵))
9493, 9biimtrdi 163 . . . 4 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 𝐵 ≤ 0) → ((𝐴↑2) = (𝐵↑2) → (𝐴 = 𝐵𝐴 = -𝐵)))
9521ad2antrr 488 . . . 4 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 𝐵 ≤ 0) → ((𝐴 = 𝐵𝐴 = -𝐵) → (𝐴↑2) = (𝐵↑2)))
9694, 95impbid 129 . . 3 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 𝐵 ≤ 0) → ((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵𝐴 = -𝐵)))
9747ad2antlr 489 . . 3 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) → (0 ≤ 𝐵𝐵 ≤ 0))
9877, 96, 97mpjaodan 799 . 2 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) → ((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵𝐴 = -𝐵)))
99 qletric 10348 . . . 4 ((0 ∈ ℚ ∧ 𝐴 ∈ ℚ) → (0 ≤ 𝐴𝐴 ≤ 0))
10045, 99mpan 424 . . 3 (𝐴 ∈ ℚ → (0 ≤ 𝐴𝐴 ≤ 0))
101100adantr 276 . 2 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (0 ≤ 𝐴𝐴 ≤ 0))
10249, 98, 101mpjaodan 799 1 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → ((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵𝐴 = -𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709   = wceq 1364  wcel 2167   class class class wbr 4034  (class class class)co 5925  cc 7894  cr 7895  0cc0 7896  cle 8079  -cneg 8215  2c2 9058  cz 9343  cq 9710  cexp 10647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-seqfrec 10557  df-exp 10648
This theorem is referenced by:  4sqlem10  12581
  Copyright terms: Public domain W3C validator