ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qsqeqor GIF version

Theorem qsqeqor 10662
Description: The squares of two rational numbers are equal iff one number equals the other or its negative. (Contributed by Jim Kingdon, 1-Nov-2024.)
Assertion
Ref Expression
qsqeqor ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → ((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵𝐴 = -𝐵)))

Proof of Theorem qsqeqor
StepHypRef Expression
1 qre 9655 . . . . . . 7 (𝐴 ∈ ℚ → 𝐴 ∈ ℝ)
21ad3antrrr 492 . . . . . 6 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 0 ≤ 𝐴) ∧ 0 ≤ 𝐵) → 𝐴 ∈ ℝ)
3 simplr 528 . . . . . 6 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 0 ≤ 𝐴) ∧ 0 ≤ 𝐵) → 0 ≤ 𝐴)
4 qre 9655 . . . . . . 7 (𝐵 ∈ ℚ → 𝐵 ∈ ℝ)
54ad3antlr 493 . . . . . 6 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 0 ≤ 𝐴) ∧ 0 ≤ 𝐵) → 𝐵 ∈ ℝ)
6 simpr 110 . . . . . 6 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 0 ≤ 𝐴) ∧ 0 ≤ 𝐵) → 0 ≤ 𝐵)
7 sq11 10624 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴↑2) = (𝐵↑2) ↔ 𝐴 = 𝐵))
82, 3, 5, 6, 7syl22anc 1250 . . . . 5 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 0 ≤ 𝐴) ∧ 0 ≤ 𝐵) → ((𝐴↑2) = (𝐵↑2) ↔ 𝐴 = 𝐵))
9 orc 713 . . . . 5 (𝐴 = 𝐵 → (𝐴 = 𝐵𝐴 = -𝐵))
108, 9biimtrdi 163 . . . 4 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 0 ≤ 𝐴) ∧ 0 ≤ 𝐵) → ((𝐴↑2) = (𝐵↑2) → (𝐴 = 𝐵𝐴 = -𝐵)))
11 oveq1 5903 . . . . . . 7 (𝐴 = 𝐵 → (𝐴↑2) = (𝐵↑2))
1211a1i 9 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 = 𝐵 → (𝐴↑2) = (𝐵↑2)))
13 oveq1 5903 . . . . . . . . 9 (𝐴 = -𝐵 → (𝐴↑2) = (-𝐵↑2))
1413adantl 277 . . . . . . . 8 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 = -𝐵) → (𝐴↑2) = (-𝐵↑2))
15 qcn 9664 . . . . . . . . . 10 (𝐵 ∈ ℚ → 𝐵 ∈ ℂ)
16 sqneg 10610 . . . . . . . . . 10 (𝐵 ∈ ℂ → (-𝐵↑2) = (𝐵↑2))
1715, 16syl 14 . . . . . . . . 9 (𝐵 ∈ ℚ → (-𝐵↑2) = (𝐵↑2))
1817ad2antlr 489 . . . . . . . 8 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 = -𝐵) → (-𝐵↑2) = (𝐵↑2))
1914, 18eqtrd 2222 . . . . . . 7 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 = -𝐵) → (𝐴↑2) = (𝐵↑2))
2019ex 115 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 = -𝐵 → (𝐴↑2) = (𝐵↑2)))
2112, 20jaod 718 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → ((𝐴 = 𝐵𝐴 = -𝐵) → (𝐴↑2) = (𝐵↑2)))
2221ad2antrr 488 . . . 4 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 0 ≤ 𝐴) ∧ 0 ≤ 𝐵) → ((𝐴 = 𝐵𝐴 = -𝐵) → (𝐴↑2) = (𝐵↑2)))
2310, 22impbid 129 . . 3 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 0 ≤ 𝐴) ∧ 0 ≤ 𝐵) → ((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵𝐴 = -𝐵)))
2417eqeq2d 2201 . . . . . 6 (𝐵 ∈ ℚ → ((𝐴↑2) = (-𝐵↑2) ↔ (𝐴↑2) = (𝐵↑2)))
2524ad3antlr 493 . . . . 5 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 0 ≤ 𝐴) ∧ 𝐵 ≤ 0) → ((𝐴↑2) = (-𝐵↑2) ↔ (𝐴↑2) = (𝐵↑2)))
261ad3antrrr 492 . . . . . . 7 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 0 ≤ 𝐴) ∧ 𝐵 ≤ 0) → 𝐴 ∈ ℝ)
27 simplr 528 . . . . . . 7 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 0 ≤ 𝐴) ∧ 𝐵 ≤ 0) → 0 ≤ 𝐴)
28 qnegcl 9666 . . . . . . . . 9 (𝐵 ∈ ℚ → -𝐵 ∈ ℚ)
29 qre 9655 . . . . . . . . 9 (-𝐵 ∈ ℚ → -𝐵 ∈ ℝ)
3028, 29syl 14 . . . . . . . 8 (𝐵 ∈ ℚ → -𝐵 ∈ ℝ)
3130ad3antlr 493 . . . . . . 7 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 0 ≤ 𝐴) ∧ 𝐵 ≤ 0) → -𝐵 ∈ ℝ)
32 simpr 110 . . . . . . . 8 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 0 ≤ 𝐴) ∧ 𝐵 ≤ 0) → 𝐵 ≤ 0)
334le0neg1d 8504 . . . . . . . . 9 (𝐵 ∈ ℚ → (𝐵 ≤ 0 ↔ 0 ≤ -𝐵))
3433ad3antlr 493 . . . . . . . 8 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 0 ≤ 𝐴) ∧ 𝐵 ≤ 0) → (𝐵 ≤ 0 ↔ 0 ≤ -𝐵))
3532, 34mpbid 147 . . . . . . 7 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 0 ≤ 𝐴) ∧ 𝐵 ≤ 0) → 0 ≤ -𝐵)
36 sq11 10624 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (-𝐵 ∈ ℝ ∧ 0 ≤ -𝐵)) → ((𝐴↑2) = (-𝐵↑2) ↔ 𝐴 = -𝐵))
3726, 27, 31, 35, 36syl22anc 1250 . . . . . 6 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 0 ≤ 𝐴) ∧ 𝐵 ≤ 0) → ((𝐴↑2) = (-𝐵↑2) ↔ 𝐴 = -𝐵))
38 olc 712 . . . . . 6 (𝐴 = -𝐵 → (𝐴 = 𝐵𝐴 = -𝐵))
3937, 38biimtrdi 163 . . . . 5 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 0 ≤ 𝐴) ∧ 𝐵 ≤ 0) → ((𝐴↑2) = (-𝐵↑2) → (𝐴 = 𝐵𝐴 = -𝐵)))
4025, 39sylbird 170 . . . 4 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 0 ≤ 𝐴) ∧ 𝐵 ≤ 0) → ((𝐴↑2) = (𝐵↑2) → (𝐴 = 𝐵𝐴 = -𝐵)))
4121ad2antrr 488 . . . 4 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 0 ≤ 𝐴) ∧ 𝐵 ≤ 0) → ((𝐴 = 𝐵𝐴 = -𝐵) → (𝐴↑2) = (𝐵↑2)))
4240, 41impbid 129 . . 3 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 0 ≤ 𝐴) ∧ 𝐵 ≤ 0) → ((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵𝐴 = -𝐵)))
43 0z 9294 . . . . . 6 0 ∈ ℤ
44 zq 9656 . . . . . 6 (0 ∈ ℤ → 0 ∈ ℚ)
4543, 44ax-mp 5 . . . . 5 0 ∈ ℚ
46 qletric 10274 . . . . 5 ((0 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (0 ≤ 𝐵𝐵 ≤ 0))
4745, 46mpan 424 . . . 4 (𝐵 ∈ ℚ → (0 ≤ 𝐵𝐵 ≤ 0))
4847ad2antlr 489 . . 3 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 0 ≤ 𝐴) → (0 ≤ 𝐵𝐵 ≤ 0))
4923, 42, 48mpjaodan 799 . 2 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 0 ≤ 𝐴) → ((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵𝐴 = -𝐵)))
50 qnegcl 9666 . . . . . . . . . 10 (𝐴 ∈ ℚ → -𝐴 ∈ ℚ)
51 qre 9655 . . . . . . . . . 10 (-𝐴 ∈ ℚ → -𝐴 ∈ ℝ)
5250, 51syl 14 . . . . . . . . 9 (𝐴 ∈ ℚ → -𝐴 ∈ ℝ)
5352ad3antrrr 492 . . . . . . . 8 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 0 ≤ 𝐵) → -𝐴 ∈ ℝ)
54 simplr 528 . . . . . . . . 9 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 0 ≤ 𝐵) → 𝐴 ≤ 0)
551le0neg1d 8504 . . . . . . . . . 10 (𝐴 ∈ ℚ → (𝐴 ≤ 0 ↔ 0 ≤ -𝐴))
5655ad3antrrr 492 . . . . . . . . 9 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 0 ≤ 𝐵) → (𝐴 ≤ 0 ↔ 0 ≤ -𝐴))
5754, 56mpbid 147 . . . . . . . 8 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 0 ≤ 𝐵) → 0 ≤ -𝐴)
584ad3antlr 493 . . . . . . . 8 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 0 ≤ 𝐵) → 𝐵 ∈ ℝ)
59 simpr 110 . . . . . . . 8 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 0 ≤ 𝐵) → 0 ≤ 𝐵)
60 sq11 10624 . . . . . . . 8 (((-𝐴 ∈ ℝ ∧ 0 ≤ -𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((-𝐴↑2) = (𝐵↑2) ↔ -𝐴 = 𝐵))
6153, 57, 58, 59, 60syl22anc 1250 . . . . . . 7 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 0 ≤ 𝐵) → ((-𝐴↑2) = (𝐵↑2) ↔ -𝐴 = 𝐵))
6261biimpd 144 . . . . . 6 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 0 ≤ 𝐵) → ((-𝐴↑2) = (𝐵↑2) → -𝐴 = 𝐵))
63 qcn 9664 . . . . . . . . . 10 (𝐴 ∈ ℚ → 𝐴 ∈ ℂ)
64 sqneg 10610 . . . . . . . . . 10 (𝐴 ∈ ℂ → (-𝐴↑2) = (𝐴↑2))
6563, 64syl 14 . . . . . . . . 9 (𝐴 ∈ ℚ → (-𝐴↑2) = (𝐴↑2))
6665adantr 276 . . . . . . . 8 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (-𝐴↑2) = (𝐴↑2))
6766eqeq1d 2198 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → ((-𝐴↑2) = (𝐵↑2) ↔ (𝐴↑2) = (𝐵↑2)))
6867ad2antrr 488 . . . . . 6 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 0 ≤ 𝐵) → ((-𝐴↑2) = (𝐵↑2) ↔ (𝐴↑2) = (𝐵↑2)))
69 negcon1 8239 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 = 𝐵 ↔ -𝐵 = 𝐴))
7063, 15, 69syl2an 289 . . . . . . . 8 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (-𝐴 = 𝐵 ↔ -𝐵 = 𝐴))
71 eqcom 2191 . . . . . . . 8 (-𝐵 = 𝐴𝐴 = -𝐵)
7270, 71bitrdi 196 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (-𝐴 = 𝐵𝐴 = -𝐵))
7372ad2antrr 488 . . . . . 6 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 0 ≤ 𝐵) → (-𝐴 = 𝐵𝐴 = -𝐵))
7462, 68, 733imtr3d 202 . . . . 5 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 0 ≤ 𝐵) → ((𝐴↑2) = (𝐵↑2) → 𝐴 = -𝐵))
7574, 38syl6 33 . . . 4 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 0 ≤ 𝐵) → ((𝐴↑2) = (𝐵↑2) → (𝐴 = 𝐵𝐴 = -𝐵)))
7621ad2antrr 488 . . . 4 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 0 ≤ 𝐵) → ((𝐴 = 𝐵𝐴 = -𝐵) → (𝐴↑2) = (𝐵↑2)))
7775, 76impbid 129 . . 3 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 0 ≤ 𝐵) → ((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵𝐴 = -𝐵)))
7852ad3antrrr 492 . . . . . . 7 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 𝐵 ≤ 0) → -𝐴 ∈ ℝ)
79 simplr 528 . . . . . . . 8 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 𝐵 ≤ 0) → 𝐴 ≤ 0)
8055ad3antrrr 492 . . . . . . . 8 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 𝐵 ≤ 0) → (𝐴 ≤ 0 ↔ 0 ≤ -𝐴))
8179, 80mpbid 147 . . . . . . 7 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 𝐵 ≤ 0) → 0 ≤ -𝐴)
8230ad3antlr 493 . . . . . . 7 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 𝐵 ≤ 0) → -𝐵 ∈ ℝ)
83 simpr 110 . . . . . . . 8 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 𝐵 ≤ 0) → 𝐵 ≤ 0)
8433ad3antlr 493 . . . . . . . 8 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 𝐵 ≤ 0) → (𝐵 ≤ 0 ↔ 0 ≤ -𝐵))
8583, 84mpbid 147 . . . . . . 7 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 𝐵 ≤ 0) → 0 ≤ -𝐵)
86 sq11 10624 . . . . . . 7 (((-𝐴 ∈ ℝ ∧ 0 ≤ -𝐴) ∧ (-𝐵 ∈ ℝ ∧ 0 ≤ -𝐵)) → ((-𝐴↑2) = (-𝐵↑2) ↔ -𝐴 = -𝐵))
8778, 81, 82, 85, 86syl22anc 1250 . . . . . 6 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 𝐵 ≤ 0) → ((-𝐴↑2) = (-𝐵↑2) ↔ -𝐴 = -𝐵))
8865, 17eqeqan12d 2205 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → ((-𝐴↑2) = (-𝐵↑2) ↔ (𝐴↑2) = (𝐵↑2)))
8988ad2antrr 488 . . . . . 6 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 𝐵 ≤ 0) → ((-𝐴↑2) = (-𝐵↑2) ↔ (𝐴↑2) = (𝐵↑2)))
9063ad3antrrr 492 . . . . . . 7 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 𝐵 ≤ 0) → 𝐴 ∈ ℂ)
9115ad3antlr 493 . . . . . . 7 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 𝐵 ≤ 0) → 𝐵 ∈ ℂ)
9290, 91neg11ad 8294 . . . . . 6 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 𝐵 ≤ 0) → (-𝐴 = -𝐵𝐴 = 𝐵))
9387, 89, 923bitr3d 218 . . . . 5 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 𝐵 ≤ 0) → ((𝐴↑2) = (𝐵↑2) ↔ 𝐴 = 𝐵))
9493, 9biimtrdi 163 . . . 4 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 𝐵 ≤ 0) → ((𝐴↑2) = (𝐵↑2) → (𝐴 = 𝐵𝐴 = -𝐵)))
9521ad2antrr 488 . . . 4 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 𝐵 ≤ 0) → ((𝐴 = 𝐵𝐴 = -𝐵) → (𝐴↑2) = (𝐵↑2)))
9694, 95impbid 129 . . 3 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 𝐵 ≤ 0) → ((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵𝐴 = -𝐵)))
9747ad2antlr 489 . . 3 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) → (0 ≤ 𝐵𝐵 ≤ 0))
9877, 96, 97mpjaodan 799 . 2 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) → ((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵𝐴 = -𝐵)))
99 qletric 10274 . . . 4 ((0 ∈ ℚ ∧ 𝐴 ∈ ℚ) → (0 ≤ 𝐴𝐴 ≤ 0))
10045, 99mpan 424 . . 3 (𝐴 ∈ ℚ → (0 ≤ 𝐴𝐴 ≤ 0))
101100adantr 276 . 2 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (0 ≤ 𝐴𝐴 ≤ 0))
10249, 98, 101mpjaodan 799 1 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → ((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵𝐴 = -𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709   = wceq 1364  wcel 2160   class class class wbr 4018  (class class class)co 5896  cc 7839  cr 7840  0cc0 7841  cle 8023  -cneg 8159  2c2 9000  cz 9283  cq 9649  cexp 10550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7932  ax-resscn 7933  ax-1cn 7934  ax-1re 7935  ax-icn 7936  ax-addcl 7937  ax-addrcl 7938  ax-mulcl 7939  ax-mulrcl 7940  ax-addcom 7941  ax-mulcom 7942  ax-addass 7943  ax-mulass 7944  ax-distr 7945  ax-i2m1 7946  ax-0lt1 7947  ax-1rid 7948  ax-0id 7949  ax-rnegex 7950  ax-precex 7951  ax-cnre 7952  ax-pre-ltirr 7953  ax-pre-ltwlin 7954  ax-pre-lttrn 7955  ax-pre-apti 7956  ax-pre-ltadd 7957  ax-pre-mulgt0 7958  ax-pre-mulext 7959
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5852  df-ov 5899  df-oprab 5900  df-mpo 5901  df-1st 6165  df-2nd 6166  df-recs 6330  df-frec 6416  df-pnf 8024  df-mnf 8025  df-xr 8026  df-ltxr 8027  df-le 8028  df-sub 8160  df-neg 8161  df-reap 8562  df-ap 8569  df-div 8660  df-inn 8950  df-2 9008  df-n0 9207  df-z 9284  df-uz 9559  df-q 9650  df-rp 9684  df-seqfrec 10477  df-exp 10551
This theorem is referenced by:  4sqlem10  12419
  Copyright terms: Public domain W3C validator