ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qsqeqor GIF version

Theorem qsqeqor 10742
Description: The squares of two rational numbers are equal iff one number equals the other or its negative. (Contributed by Jim Kingdon, 1-Nov-2024.)
Assertion
Ref Expression
qsqeqor ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → ((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵𝐴 = -𝐵)))

Proof of Theorem qsqeqor
StepHypRef Expression
1 qre 9699 . . . . . . 7 (𝐴 ∈ ℚ → 𝐴 ∈ ℝ)
21ad3antrrr 492 . . . . . 6 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 0 ≤ 𝐴) ∧ 0 ≤ 𝐵) → 𝐴 ∈ ℝ)
3 simplr 528 . . . . . 6 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 0 ≤ 𝐴) ∧ 0 ≤ 𝐵) → 0 ≤ 𝐴)
4 qre 9699 . . . . . . 7 (𝐵 ∈ ℚ → 𝐵 ∈ ℝ)
54ad3antlr 493 . . . . . 6 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 0 ≤ 𝐴) ∧ 0 ≤ 𝐵) → 𝐵 ∈ ℝ)
6 simpr 110 . . . . . 6 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 0 ≤ 𝐴) ∧ 0 ≤ 𝐵) → 0 ≤ 𝐵)
7 sq11 10704 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴↑2) = (𝐵↑2) ↔ 𝐴 = 𝐵))
82, 3, 5, 6, 7syl22anc 1250 . . . . 5 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 0 ≤ 𝐴) ∧ 0 ≤ 𝐵) → ((𝐴↑2) = (𝐵↑2) ↔ 𝐴 = 𝐵))
9 orc 713 . . . . 5 (𝐴 = 𝐵 → (𝐴 = 𝐵𝐴 = -𝐵))
108, 9biimtrdi 163 . . . 4 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 0 ≤ 𝐴) ∧ 0 ≤ 𝐵) → ((𝐴↑2) = (𝐵↑2) → (𝐴 = 𝐵𝐴 = -𝐵)))
11 oveq1 5929 . . . . . . 7 (𝐴 = 𝐵 → (𝐴↑2) = (𝐵↑2))
1211a1i 9 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 = 𝐵 → (𝐴↑2) = (𝐵↑2)))
13 oveq1 5929 . . . . . . . . 9 (𝐴 = -𝐵 → (𝐴↑2) = (-𝐵↑2))
1413adantl 277 . . . . . . . 8 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 = -𝐵) → (𝐴↑2) = (-𝐵↑2))
15 qcn 9708 . . . . . . . . . 10 (𝐵 ∈ ℚ → 𝐵 ∈ ℂ)
16 sqneg 10690 . . . . . . . . . 10 (𝐵 ∈ ℂ → (-𝐵↑2) = (𝐵↑2))
1715, 16syl 14 . . . . . . . . 9 (𝐵 ∈ ℚ → (-𝐵↑2) = (𝐵↑2))
1817ad2antlr 489 . . . . . . . 8 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 = -𝐵) → (-𝐵↑2) = (𝐵↑2))
1914, 18eqtrd 2229 . . . . . . 7 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 = -𝐵) → (𝐴↑2) = (𝐵↑2))
2019ex 115 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 = -𝐵 → (𝐴↑2) = (𝐵↑2)))
2112, 20jaod 718 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → ((𝐴 = 𝐵𝐴 = -𝐵) → (𝐴↑2) = (𝐵↑2)))
2221ad2antrr 488 . . . 4 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 0 ≤ 𝐴) ∧ 0 ≤ 𝐵) → ((𝐴 = 𝐵𝐴 = -𝐵) → (𝐴↑2) = (𝐵↑2)))
2310, 22impbid 129 . . 3 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 0 ≤ 𝐴) ∧ 0 ≤ 𝐵) → ((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵𝐴 = -𝐵)))
2417eqeq2d 2208 . . . . . 6 (𝐵 ∈ ℚ → ((𝐴↑2) = (-𝐵↑2) ↔ (𝐴↑2) = (𝐵↑2)))
2524ad3antlr 493 . . . . 5 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 0 ≤ 𝐴) ∧ 𝐵 ≤ 0) → ((𝐴↑2) = (-𝐵↑2) ↔ (𝐴↑2) = (𝐵↑2)))
261ad3antrrr 492 . . . . . . 7 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 0 ≤ 𝐴) ∧ 𝐵 ≤ 0) → 𝐴 ∈ ℝ)
27 simplr 528 . . . . . . 7 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 0 ≤ 𝐴) ∧ 𝐵 ≤ 0) → 0 ≤ 𝐴)
28 qnegcl 9710 . . . . . . . . 9 (𝐵 ∈ ℚ → -𝐵 ∈ ℚ)
29 qre 9699 . . . . . . . . 9 (-𝐵 ∈ ℚ → -𝐵 ∈ ℝ)
3028, 29syl 14 . . . . . . . 8 (𝐵 ∈ ℚ → -𝐵 ∈ ℝ)
3130ad3antlr 493 . . . . . . 7 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 0 ≤ 𝐴) ∧ 𝐵 ≤ 0) → -𝐵 ∈ ℝ)
32 simpr 110 . . . . . . . 8 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 0 ≤ 𝐴) ∧ 𝐵 ≤ 0) → 𝐵 ≤ 0)
334le0neg1d 8544 . . . . . . . . 9 (𝐵 ∈ ℚ → (𝐵 ≤ 0 ↔ 0 ≤ -𝐵))
3433ad3antlr 493 . . . . . . . 8 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 0 ≤ 𝐴) ∧ 𝐵 ≤ 0) → (𝐵 ≤ 0 ↔ 0 ≤ -𝐵))
3532, 34mpbid 147 . . . . . . 7 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 0 ≤ 𝐴) ∧ 𝐵 ≤ 0) → 0 ≤ -𝐵)
36 sq11 10704 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (-𝐵 ∈ ℝ ∧ 0 ≤ -𝐵)) → ((𝐴↑2) = (-𝐵↑2) ↔ 𝐴 = -𝐵))
3726, 27, 31, 35, 36syl22anc 1250 . . . . . 6 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 0 ≤ 𝐴) ∧ 𝐵 ≤ 0) → ((𝐴↑2) = (-𝐵↑2) ↔ 𝐴 = -𝐵))
38 olc 712 . . . . . 6 (𝐴 = -𝐵 → (𝐴 = 𝐵𝐴 = -𝐵))
3937, 38biimtrdi 163 . . . . 5 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 0 ≤ 𝐴) ∧ 𝐵 ≤ 0) → ((𝐴↑2) = (-𝐵↑2) → (𝐴 = 𝐵𝐴 = -𝐵)))
4025, 39sylbird 170 . . . 4 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 0 ≤ 𝐴) ∧ 𝐵 ≤ 0) → ((𝐴↑2) = (𝐵↑2) → (𝐴 = 𝐵𝐴 = -𝐵)))
4121ad2antrr 488 . . . 4 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 0 ≤ 𝐴) ∧ 𝐵 ≤ 0) → ((𝐴 = 𝐵𝐴 = -𝐵) → (𝐴↑2) = (𝐵↑2)))
4240, 41impbid 129 . . 3 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 0 ≤ 𝐴) ∧ 𝐵 ≤ 0) → ((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵𝐴 = -𝐵)))
43 0z 9337 . . . . . 6 0 ∈ ℤ
44 zq 9700 . . . . . 6 (0 ∈ ℤ → 0 ∈ ℚ)
4543, 44ax-mp 5 . . . . 5 0 ∈ ℚ
46 qletric 10331 . . . . 5 ((0 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (0 ≤ 𝐵𝐵 ≤ 0))
4745, 46mpan 424 . . . 4 (𝐵 ∈ ℚ → (0 ≤ 𝐵𝐵 ≤ 0))
4847ad2antlr 489 . . 3 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 0 ≤ 𝐴) → (0 ≤ 𝐵𝐵 ≤ 0))
4923, 42, 48mpjaodan 799 . 2 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 0 ≤ 𝐴) → ((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵𝐴 = -𝐵)))
50 qnegcl 9710 . . . . . . . . . 10 (𝐴 ∈ ℚ → -𝐴 ∈ ℚ)
51 qre 9699 . . . . . . . . . 10 (-𝐴 ∈ ℚ → -𝐴 ∈ ℝ)
5250, 51syl 14 . . . . . . . . 9 (𝐴 ∈ ℚ → -𝐴 ∈ ℝ)
5352ad3antrrr 492 . . . . . . . 8 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 0 ≤ 𝐵) → -𝐴 ∈ ℝ)
54 simplr 528 . . . . . . . . 9 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 0 ≤ 𝐵) → 𝐴 ≤ 0)
551le0neg1d 8544 . . . . . . . . . 10 (𝐴 ∈ ℚ → (𝐴 ≤ 0 ↔ 0 ≤ -𝐴))
5655ad3antrrr 492 . . . . . . . . 9 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 0 ≤ 𝐵) → (𝐴 ≤ 0 ↔ 0 ≤ -𝐴))
5754, 56mpbid 147 . . . . . . . 8 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 0 ≤ 𝐵) → 0 ≤ -𝐴)
584ad3antlr 493 . . . . . . . 8 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 0 ≤ 𝐵) → 𝐵 ∈ ℝ)
59 simpr 110 . . . . . . . 8 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 0 ≤ 𝐵) → 0 ≤ 𝐵)
60 sq11 10704 . . . . . . . 8 (((-𝐴 ∈ ℝ ∧ 0 ≤ -𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((-𝐴↑2) = (𝐵↑2) ↔ -𝐴 = 𝐵))
6153, 57, 58, 59, 60syl22anc 1250 . . . . . . 7 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 0 ≤ 𝐵) → ((-𝐴↑2) = (𝐵↑2) ↔ -𝐴 = 𝐵))
6261biimpd 144 . . . . . 6 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 0 ≤ 𝐵) → ((-𝐴↑2) = (𝐵↑2) → -𝐴 = 𝐵))
63 qcn 9708 . . . . . . . . . 10 (𝐴 ∈ ℚ → 𝐴 ∈ ℂ)
64 sqneg 10690 . . . . . . . . . 10 (𝐴 ∈ ℂ → (-𝐴↑2) = (𝐴↑2))
6563, 64syl 14 . . . . . . . . 9 (𝐴 ∈ ℚ → (-𝐴↑2) = (𝐴↑2))
6665adantr 276 . . . . . . . 8 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (-𝐴↑2) = (𝐴↑2))
6766eqeq1d 2205 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → ((-𝐴↑2) = (𝐵↑2) ↔ (𝐴↑2) = (𝐵↑2)))
6867ad2antrr 488 . . . . . 6 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 0 ≤ 𝐵) → ((-𝐴↑2) = (𝐵↑2) ↔ (𝐴↑2) = (𝐵↑2)))
69 negcon1 8278 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 = 𝐵 ↔ -𝐵 = 𝐴))
7063, 15, 69syl2an 289 . . . . . . . 8 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (-𝐴 = 𝐵 ↔ -𝐵 = 𝐴))
71 eqcom 2198 . . . . . . . 8 (-𝐵 = 𝐴𝐴 = -𝐵)
7270, 71bitrdi 196 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (-𝐴 = 𝐵𝐴 = -𝐵))
7372ad2antrr 488 . . . . . 6 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 0 ≤ 𝐵) → (-𝐴 = 𝐵𝐴 = -𝐵))
7462, 68, 733imtr3d 202 . . . . 5 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 0 ≤ 𝐵) → ((𝐴↑2) = (𝐵↑2) → 𝐴 = -𝐵))
7574, 38syl6 33 . . . 4 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 0 ≤ 𝐵) → ((𝐴↑2) = (𝐵↑2) → (𝐴 = 𝐵𝐴 = -𝐵)))
7621ad2antrr 488 . . . 4 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 0 ≤ 𝐵) → ((𝐴 = 𝐵𝐴 = -𝐵) → (𝐴↑2) = (𝐵↑2)))
7775, 76impbid 129 . . 3 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 0 ≤ 𝐵) → ((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵𝐴 = -𝐵)))
7852ad3antrrr 492 . . . . . . 7 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 𝐵 ≤ 0) → -𝐴 ∈ ℝ)
79 simplr 528 . . . . . . . 8 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 𝐵 ≤ 0) → 𝐴 ≤ 0)
8055ad3antrrr 492 . . . . . . . 8 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 𝐵 ≤ 0) → (𝐴 ≤ 0 ↔ 0 ≤ -𝐴))
8179, 80mpbid 147 . . . . . . 7 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 𝐵 ≤ 0) → 0 ≤ -𝐴)
8230ad3antlr 493 . . . . . . 7 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 𝐵 ≤ 0) → -𝐵 ∈ ℝ)
83 simpr 110 . . . . . . . 8 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 𝐵 ≤ 0) → 𝐵 ≤ 0)
8433ad3antlr 493 . . . . . . . 8 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 𝐵 ≤ 0) → (𝐵 ≤ 0 ↔ 0 ≤ -𝐵))
8583, 84mpbid 147 . . . . . . 7 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 𝐵 ≤ 0) → 0 ≤ -𝐵)
86 sq11 10704 . . . . . . 7 (((-𝐴 ∈ ℝ ∧ 0 ≤ -𝐴) ∧ (-𝐵 ∈ ℝ ∧ 0 ≤ -𝐵)) → ((-𝐴↑2) = (-𝐵↑2) ↔ -𝐴 = -𝐵))
8778, 81, 82, 85, 86syl22anc 1250 . . . . . 6 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 𝐵 ≤ 0) → ((-𝐴↑2) = (-𝐵↑2) ↔ -𝐴 = -𝐵))
8865, 17eqeqan12d 2212 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → ((-𝐴↑2) = (-𝐵↑2) ↔ (𝐴↑2) = (𝐵↑2)))
8988ad2antrr 488 . . . . . 6 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 𝐵 ≤ 0) → ((-𝐴↑2) = (-𝐵↑2) ↔ (𝐴↑2) = (𝐵↑2)))
9063ad3antrrr 492 . . . . . . 7 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 𝐵 ≤ 0) → 𝐴 ∈ ℂ)
9115ad3antlr 493 . . . . . . 7 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 𝐵 ≤ 0) → 𝐵 ∈ ℂ)
9290, 91neg11ad 8333 . . . . . 6 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 𝐵 ≤ 0) → (-𝐴 = -𝐵𝐴 = 𝐵))
9387, 89, 923bitr3d 218 . . . . 5 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 𝐵 ≤ 0) → ((𝐴↑2) = (𝐵↑2) ↔ 𝐴 = 𝐵))
9493, 9biimtrdi 163 . . . 4 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 𝐵 ≤ 0) → ((𝐴↑2) = (𝐵↑2) → (𝐴 = 𝐵𝐴 = -𝐵)))
9521ad2antrr 488 . . . 4 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 𝐵 ≤ 0) → ((𝐴 = 𝐵𝐴 = -𝐵) → (𝐴↑2) = (𝐵↑2)))
9694, 95impbid 129 . . 3 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) ∧ 𝐵 ≤ 0) → ((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵𝐴 = -𝐵)))
9747ad2antlr 489 . . 3 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) → (0 ≤ 𝐵𝐵 ≤ 0))
9877, 96, 97mpjaodan 799 . 2 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ 𝐴 ≤ 0) → ((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵𝐴 = -𝐵)))
99 qletric 10331 . . . 4 ((0 ∈ ℚ ∧ 𝐴 ∈ ℚ) → (0 ≤ 𝐴𝐴 ≤ 0))
10045, 99mpan 424 . . 3 (𝐴 ∈ ℚ → (0 ≤ 𝐴𝐴 ≤ 0))
101100adantr 276 . 2 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (0 ≤ 𝐴𝐴 ≤ 0))
10249, 98, 101mpjaodan 799 1 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → ((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵𝐴 = -𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709   = wceq 1364  wcel 2167   class class class wbr 4033  (class class class)co 5922  cc 7877  cr 7878  0cc0 7879  cle 8062  -cneg 8198  2c2 9041  cz 9326  cq 9693  cexp 10630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-seqfrec 10540  df-exp 10631
This theorem is referenced by:  4sqlem10  12556
  Copyright terms: Public domain W3C validator