ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcpremul GIF version

Theorem pcpremul 12247
Description: Multiplicative property of the prime count pre-function. Note that the primality of 𝑃 is essential for this property; (4 pCnt 2) = 0 but (4 pCnt (2 · 2)) = 1 ≠ 2 · (4 pCnt 2) = 0. Since this is needed to show uniqueness for the real prime count function (over ), we don't bother to define it off the primes. (Contributed by Mario Carneiro, 23-Feb-2014.)
Hypotheses
Ref Expression
pcpremul.1 𝑆 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑀}, ℝ, < )
pcpremul.2 𝑇 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑁}, ℝ, < )
pcpremul.3 𝑈 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑀 · 𝑁)}, ℝ, < )
Assertion
Ref Expression
pcpremul ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 + 𝑇) = 𝑈)
Distinct variable groups:   𝑛,𝑀   𝑛,𝑁   𝑃,𝑛
Allowed substitution hints:   𝑆(𝑛)   𝑇(𝑛)   𝑈(𝑛)

Proof of Theorem pcpremul
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3232 . . . . . 6 {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑀 · 𝑁)} ⊆ ℕ0
2 nn0ssz 9230 . . . . . 6 0 ⊆ ℤ
31, 2sstri 3156 . . . . 5 {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑀 · 𝑁)} ⊆ ℤ
43a1i 9 . . . 4 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑀 · 𝑁)} ⊆ ℤ)
5 prmuz2 12085 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
653ad2ant1 1013 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑃 ∈ (ℤ‘2))
7 zmulcl 9265 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ)
87ad2ant2r 506 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑀 · 𝑁) ∈ ℤ)
983adant1 1010 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑀 · 𝑁) ∈ ℤ)
10 simp2l 1018 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑀 ∈ ℤ)
1110zcnd 9335 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑀 ∈ ℂ)
12 simp3l 1020 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑁 ∈ ℤ)
1312zcnd 9335 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑁 ∈ ℂ)
14 simp2r 1019 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑀 ≠ 0)
15 0zd 9224 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 0 ∈ ℤ)
16 zapne 9286 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 0 ∈ ℤ) → (𝑀 # 0 ↔ 𝑀 ≠ 0))
1710, 15, 16syl2anc 409 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑀 # 0 ↔ 𝑀 ≠ 0))
1814, 17mpbird 166 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑀 # 0)
19 simp3r 1021 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑁 ≠ 0)
20 zapne 9286 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → (𝑁 # 0 ↔ 𝑁 ≠ 0))
2112, 15, 20syl2anc 409 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑁 # 0 ↔ 𝑁 ≠ 0))
2219, 21mpbird 166 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑁 # 0)
2311, 13, 18, 22mulap0d 8576 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑀 · 𝑁) # 0)
24 zapne 9286 . . . . . . 7 (((𝑀 · 𝑁) ∈ ℤ ∧ 0 ∈ ℤ) → ((𝑀 · 𝑁) # 0 ↔ (𝑀 · 𝑁) ≠ 0))
259, 15, 24syl2anc 409 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑀 · 𝑁) # 0 ↔ (𝑀 · 𝑁) ≠ 0))
2623, 25mpbid 146 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑀 · 𝑁) ≠ 0)
27 eqid 2170 . . . . . 6 {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑀 · 𝑁)} = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑀 · 𝑁)}
2827pclemdc 12242 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ ((𝑀 · 𝑁) ∈ ℤ ∧ (𝑀 · 𝑁) ≠ 0)) → ∀𝑥 ∈ ℤ DECID 𝑥 ∈ {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑀 · 𝑁)})
296, 9, 26, 28syl12anc 1231 . . . 4 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ∀𝑥 ∈ ℤ DECID 𝑥 ∈ {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑀 · 𝑁)})
3027pclemub 12241 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ ((𝑀 · 𝑁) ∈ ℤ ∧ (𝑀 · 𝑁) ≠ 0)) → ∃𝑥 ∈ ℤ ∀𝑦 ∈ {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑀 · 𝑁)}𝑦𝑥)
316, 9, 26, 30syl12anc 1231 . . . 4 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ∃𝑥 ∈ ℤ ∀𝑦 ∈ {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑀 · 𝑁)}𝑦𝑥)
32 oveq2 5861 . . . . . . 7 (𝑥 = (𝑆 + 𝑇) → (𝑃𝑥) = (𝑃↑(𝑆 + 𝑇)))
3332breq1d 3999 . . . . . 6 (𝑥 = (𝑆 + 𝑇) → ((𝑃𝑥) ∥ (𝑀 · 𝑁) ↔ (𝑃↑(𝑆 + 𝑇)) ∥ (𝑀 · 𝑁)))
34 eqid 2170 . . . . . . . . . 10 {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑀} = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑀}
35 pcpremul.1 . . . . . . . . . 10 𝑆 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑀}, ℝ, < )
3634, 35pcprecl 12243 . . . . . . . . 9 ((𝑃 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0)) → (𝑆 ∈ ℕ0 ∧ (𝑃𝑆) ∥ 𝑀))
376, 10, 14, 36syl12anc 1231 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 ∈ ℕ0 ∧ (𝑃𝑆) ∥ 𝑀))
3837simpld 111 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑆 ∈ ℕ0)
39 eqid 2170 . . . . . . . . . 10 {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑁} = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑁}
40 pcpremul.2 . . . . . . . . . 10 𝑇 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑁}, ℝ, < )
4139, 40pcprecl 12243 . . . . . . . . 9 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑇 ∈ ℕ0 ∧ (𝑃𝑇) ∥ 𝑁))
426, 12, 19, 41syl12anc 1231 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑇 ∈ ℕ0 ∧ (𝑃𝑇) ∥ 𝑁))
4342simpld 111 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑇 ∈ ℕ0)
4438, 43nn0addcld 9192 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 + 𝑇) ∈ ℕ0)
45 prmnn 12064 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
46453ad2ant1 1013 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑃 ∈ ℕ)
4746, 44nnexpcld 10631 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑(𝑆 + 𝑇)) ∈ ℕ)
4847nnzd 9333 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑(𝑆 + 𝑇)) ∈ ℤ)
4946, 43nnexpcld 10631 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃𝑇) ∈ ℕ)
5049nnzd 9333 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃𝑇) ∈ ℤ)
5110, 50zmulcld 9340 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑀 · (𝑃𝑇)) ∈ ℤ)
5246nncnd 8892 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑃 ∈ ℂ)
5352, 43, 38expaddd 10611 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑(𝑆 + 𝑇)) = ((𝑃𝑆) · (𝑃𝑇)))
5437simprd 113 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃𝑆) ∥ 𝑀)
5546, 38nnexpcld 10631 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃𝑆) ∈ ℕ)
5655nnzd 9333 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃𝑆) ∈ ℤ)
57 dvdsmulc 11781 . . . . . . . . . 10 (((𝑃𝑆) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑃𝑇) ∈ ℤ) → ((𝑃𝑆) ∥ 𝑀 → ((𝑃𝑆) · (𝑃𝑇)) ∥ (𝑀 · (𝑃𝑇))))
5856, 10, 50, 57syl3anc 1233 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑃𝑆) ∥ 𝑀 → ((𝑃𝑆) · (𝑃𝑇)) ∥ (𝑀 · (𝑃𝑇))))
5954, 58mpd 13 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑃𝑆) · (𝑃𝑇)) ∥ (𝑀 · (𝑃𝑇)))
6053, 59eqbrtrd 4011 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑(𝑆 + 𝑇)) ∥ (𝑀 · (𝑃𝑇)))
6142simprd 113 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃𝑇) ∥ 𝑁)
62 dvdscmul 11780 . . . . . . . . 9 (((𝑃𝑇) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑃𝑇) ∥ 𝑁 → (𝑀 · (𝑃𝑇)) ∥ (𝑀 · 𝑁)))
6350, 12, 10, 62syl3anc 1233 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑃𝑇) ∥ 𝑁 → (𝑀 · (𝑃𝑇)) ∥ (𝑀 · 𝑁)))
6461, 63mpd 13 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑀 · (𝑃𝑇)) ∥ (𝑀 · 𝑁))
6548, 51, 9, 60, 64dvdstrd 11792 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑(𝑆 + 𝑇)) ∥ (𝑀 · 𝑁))
6633, 44, 65elrabd 2888 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 + 𝑇) ∈ {𝑥 ∈ ℕ0 ∣ (𝑃𝑥) ∥ (𝑀 · 𝑁)})
67 oveq2 5861 . . . . . . 7 (𝑥 = 𝑛 → (𝑃𝑥) = (𝑃𝑛))
6867breq1d 3999 . . . . . 6 (𝑥 = 𝑛 → ((𝑃𝑥) ∥ (𝑀 · 𝑁) ↔ (𝑃𝑛) ∥ (𝑀 · 𝑁)))
6968cbvrabv 2729 . . . . 5 {𝑥 ∈ ℕ0 ∣ (𝑃𝑥) ∥ (𝑀 · 𝑁)} = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑀 · 𝑁)}
7066, 69eleqtrdi 2263 . . . 4 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 + 𝑇) ∈ {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑀 · 𝑁)})
714, 29, 31, 70suprzubdc 11907 . . 3 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 + 𝑇) ≤ sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑀 · 𝑁)}, ℝ, < ))
72 pcpremul.3 . . 3 𝑈 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑀 · 𝑁)}, ℝ, < )
7371, 72breqtrrdi 4031 . 2 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 + 𝑇) ≤ 𝑈)
7434, 35pcprendvds2 12245 . . . . . 6 ((𝑃 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0)) → ¬ 𝑃 ∥ (𝑀 / (𝑃𝑆)))
756, 10, 14, 74syl12anc 1231 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ 𝑃 ∥ (𝑀 / (𝑃𝑆)))
7639, 40pcprendvds2 12245 . . . . . 6 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ 𝑃 ∥ (𝑁 / (𝑃𝑇)))
776, 12, 19, 76syl12anc 1231 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ 𝑃 ∥ (𝑁 / (𝑃𝑇)))
78 ioran 747 . . . . 5 (¬ (𝑃 ∥ (𝑀 / (𝑃𝑆)) ∨ 𝑃 ∥ (𝑁 / (𝑃𝑇))) ↔ (¬ 𝑃 ∥ (𝑀 / (𝑃𝑆)) ∧ ¬ 𝑃 ∥ (𝑁 / (𝑃𝑇))))
7975, 77, 78sylanbrc 415 . . . 4 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ (𝑃 ∥ (𝑀 / (𝑃𝑆)) ∨ 𝑃 ∥ (𝑁 / (𝑃𝑇))))
80 simp1 992 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑃 ∈ ℙ)
8155nnne0d 8923 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃𝑆) ≠ 0)
82 dvdsval2 11752 . . . . . . 7 (((𝑃𝑆) ∈ ℤ ∧ (𝑃𝑆) ≠ 0 ∧ 𝑀 ∈ ℤ) → ((𝑃𝑆) ∥ 𝑀 ↔ (𝑀 / (𝑃𝑆)) ∈ ℤ))
8356, 81, 10, 82syl3anc 1233 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑃𝑆) ∥ 𝑀 ↔ (𝑀 / (𝑃𝑆)) ∈ ℤ))
8454, 83mpbid 146 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑀 / (𝑃𝑆)) ∈ ℤ)
8549nnne0d 8923 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃𝑇) ≠ 0)
86 dvdsval2 11752 . . . . . . 7 (((𝑃𝑇) ∈ ℤ ∧ (𝑃𝑇) ≠ 0 ∧ 𝑁 ∈ ℤ) → ((𝑃𝑇) ∥ 𝑁 ↔ (𝑁 / (𝑃𝑇)) ∈ ℤ))
8750, 85, 12, 86syl3anc 1233 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑃𝑇) ∥ 𝑁 ↔ (𝑁 / (𝑃𝑇)) ∈ ℤ))
8861, 87mpbid 146 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑁 / (𝑃𝑇)) ∈ ℤ)
89 euclemma 12100 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝑀 / (𝑃𝑆)) ∈ ℤ ∧ (𝑁 / (𝑃𝑇)) ∈ ℤ) → (𝑃 ∥ ((𝑀 / (𝑃𝑆)) · (𝑁 / (𝑃𝑇))) ↔ (𝑃 ∥ (𝑀 / (𝑃𝑆)) ∨ 𝑃 ∥ (𝑁 / (𝑃𝑇)))))
9080, 84, 88, 89syl3anc 1233 . . . 4 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃 ∥ ((𝑀 / (𝑃𝑆)) · (𝑁 / (𝑃𝑇))) ↔ (𝑃 ∥ (𝑀 / (𝑃𝑆)) ∨ 𝑃 ∥ (𝑁 / (𝑃𝑇)))))
9179, 90mtbird 668 . . 3 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ 𝑃 ∥ ((𝑀 / (𝑃𝑆)) · (𝑁 / (𝑃𝑇))))
9227, 72pcprecl 12243 . . . . . . 7 ((𝑃 ∈ (ℤ‘2) ∧ ((𝑀 · 𝑁) ∈ ℤ ∧ (𝑀 · 𝑁) ≠ 0)) → (𝑈 ∈ ℕ0 ∧ (𝑃𝑈) ∥ (𝑀 · 𝑁)))
936, 9, 26, 92syl12anc 1231 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑈 ∈ ℕ0 ∧ (𝑃𝑈) ∥ (𝑀 · 𝑁)))
9493simpld 111 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑈 ∈ ℕ0)
95 nn0ltp1le 9274 . . . . 5 (((𝑆 + 𝑇) ∈ ℕ0𝑈 ∈ ℕ0) → ((𝑆 + 𝑇) < 𝑈 ↔ ((𝑆 + 𝑇) + 1) ≤ 𝑈))
9644, 94, 95syl2anc 409 . . . 4 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑆 + 𝑇) < 𝑈 ↔ ((𝑆 + 𝑇) + 1) ≤ 𝑈))
9746nnzd 9333 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑃 ∈ ℤ)
98 peano2nn0 9175 . . . . . . . 8 ((𝑆 + 𝑇) ∈ ℕ0 → ((𝑆 + 𝑇) + 1) ∈ ℕ0)
9944, 98syl 14 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑆 + 𝑇) + 1) ∈ ℕ0)
100 dvdsexp 11821 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ ((𝑆 + 𝑇) + 1) ∈ ℕ0𝑈 ∈ (ℤ‘((𝑆 + 𝑇) + 1))) → (𝑃↑((𝑆 + 𝑇) + 1)) ∥ (𝑃𝑈))
1011003expia 1200 . . . . . . 7 ((𝑃 ∈ ℤ ∧ ((𝑆 + 𝑇) + 1) ∈ ℕ0) → (𝑈 ∈ (ℤ‘((𝑆 + 𝑇) + 1)) → (𝑃↑((𝑆 + 𝑇) + 1)) ∥ (𝑃𝑈)))
10297, 99, 101syl2anc 409 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑈 ∈ (ℤ‘((𝑆 + 𝑇) + 1)) → (𝑃↑((𝑆 + 𝑇) + 1)) ∥ (𝑃𝑈)))
10393simprd 113 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃𝑈) ∥ (𝑀 · 𝑁))
10446, 99nnexpcld 10631 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑((𝑆 + 𝑇) + 1)) ∈ ℕ)
105104nnzd 9333 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑((𝑆 + 𝑇) + 1)) ∈ ℤ)
10646, 94nnexpcld 10631 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃𝑈) ∈ ℕ)
107106nnzd 9333 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃𝑈) ∈ ℤ)
108 dvdstr 11790 . . . . . . . 8 (((𝑃↑((𝑆 + 𝑇) + 1)) ∈ ℤ ∧ (𝑃𝑈) ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → (((𝑃↑((𝑆 + 𝑇) + 1)) ∥ (𝑃𝑈) ∧ (𝑃𝑈) ∥ (𝑀 · 𝑁)) → (𝑃↑((𝑆 + 𝑇) + 1)) ∥ (𝑀 · 𝑁)))
109105, 107, 9, 108syl3anc 1233 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (((𝑃↑((𝑆 + 𝑇) + 1)) ∥ (𝑃𝑈) ∧ (𝑃𝑈) ∥ (𝑀 · 𝑁)) → (𝑃↑((𝑆 + 𝑇) + 1)) ∥ (𝑀 · 𝑁)))
110103, 109mpan2d 426 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑃↑((𝑆 + 𝑇) + 1)) ∥ (𝑃𝑈) → (𝑃↑((𝑆 + 𝑇) + 1)) ∥ (𝑀 · 𝑁)))
111102, 110syld 45 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑈 ∈ (ℤ‘((𝑆 + 𝑇) + 1)) → (𝑃↑((𝑆 + 𝑇) + 1)) ∥ (𝑀 · 𝑁)))
11299nn0zd 9332 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑆 + 𝑇) + 1) ∈ ℤ)
11394nn0zd 9332 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑈 ∈ ℤ)
114 eluz 9500 . . . . . 6 ((((𝑆 + 𝑇) + 1) ∈ ℤ ∧ 𝑈 ∈ ℤ) → (𝑈 ∈ (ℤ‘((𝑆 + 𝑇) + 1)) ↔ ((𝑆 + 𝑇) + 1) ≤ 𝑈))
115112, 113, 114syl2anc 409 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑈 ∈ (ℤ‘((𝑆 + 𝑇) + 1)) ↔ ((𝑆 + 𝑇) + 1) ≤ 𝑈))
11652, 44expp1d 10610 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑((𝑆 + 𝑇) + 1)) = ((𝑃↑(𝑆 + 𝑇)) · 𝑃))
11711, 13mulcld 7940 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑀 · 𝑁) ∈ ℂ)
11847nncnd 8892 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑(𝑆 + 𝑇)) ∈ ℂ)
11947nnap0d 8924 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑(𝑆 + 𝑇)) # 0)
120117, 118, 119divcanap2d 8709 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑃↑(𝑆 + 𝑇)) · ((𝑀 · 𝑁) / (𝑃↑(𝑆 + 𝑇)))) = (𝑀 · 𝑁))
12153oveq2d 5869 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑀 · 𝑁) / (𝑃↑(𝑆 + 𝑇))) = ((𝑀 · 𝑁) / ((𝑃𝑆) · (𝑃𝑇))))
12255nncnd 8892 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃𝑆) ∈ ℂ)
12349nncnd 8892 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃𝑇) ∈ ℂ)
12455nnap0d 8924 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃𝑆) # 0)
12549nnap0d 8924 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃𝑇) # 0)
12611, 122, 13, 123, 124, 125divmuldivapd 8749 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑀 / (𝑃𝑆)) · (𝑁 / (𝑃𝑇))) = ((𝑀 · 𝑁) / ((𝑃𝑆) · (𝑃𝑇))))
127121, 126eqtr4d 2206 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑀 · 𝑁) / (𝑃↑(𝑆 + 𝑇))) = ((𝑀 / (𝑃𝑆)) · (𝑁 / (𝑃𝑇))))
128127oveq2d 5869 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑃↑(𝑆 + 𝑇)) · ((𝑀 · 𝑁) / (𝑃↑(𝑆 + 𝑇)))) = ((𝑃↑(𝑆 + 𝑇)) · ((𝑀 / (𝑃𝑆)) · (𝑁 / (𝑃𝑇)))))
129120, 128eqtr3d 2205 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑀 · 𝑁) = ((𝑃↑(𝑆 + 𝑇)) · ((𝑀 / (𝑃𝑆)) · (𝑁 / (𝑃𝑇)))))
130116, 129breq12d 4002 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑃↑((𝑆 + 𝑇) + 1)) ∥ (𝑀 · 𝑁) ↔ ((𝑃↑(𝑆 + 𝑇)) · 𝑃) ∥ ((𝑃↑(𝑆 + 𝑇)) · ((𝑀 / (𝑃𝑆)) · (𝑁 / (𝑃𝑇))))))
13184, 88zmulcld 9340 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑀 / (𝑃𝑆)) · (𝑁 / (𝑃𝑇))) ∈ ℤ)
13247nnne0d 8923 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑(𝑆 + 𝑇)) ≠ 0)
133 dvdscmulr 11782 . . . . . . 7 ((𝑃 ∈ ℤ ∧ ((𝑀 / (𝑃𝑆)) · (𝑁 / (𝑃𝑇))) ∈ ℤ ∧ ((𝑃↑(𝑆 + 𝑇)) ∈ ℤ ∧ (𝑃↑(𝑆 + 𝑇)) ≠ 0)) → (((𝑃↑(𝑆 + 𝑇)) · 𝑃) ∥ ((𝑃↑(𝑆 + 𝑇)) · ((𝑀 / (𝑃𝑆)) · (𝑁 / (𝑃𝑇)))) ↔ 𝑃 ∥ ((𝑀 / (𝑃𝑆)) · (𝑁 / (𝑃𝑇)))))
13497, 131, 48, 132, 133syl112anc 1237 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (((𝑃↑(𝑆 + 𝑇)) · 𝑃) ∥ ((𝑃↑(𝑆 + 𝑇)) · ((𝑀 / (𝑃𝑆)) · (𝑁 / (𝑃𝑇)))) ↔ 𝑃 ∥ ((𝑀 / (𝑃𝑆)) · (𝑁 / (𝑃𝑇)))))
135130, 134bitrd 187 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑃↑((𝑆 + 𝑇) + 1)) ∥ (𝑀 · 𝑁) ↔ 𝑃 ∥ ((𝑀 / (𝑃𝑆)) · (𝑁 / (𝑃𝑇)))))
136111, 115, 1353imtr3d 201 . . . 4 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (((𝑆 + 𝑇) + 1) ≤ 𝑈𝑃 ∥ ((𝑀 / (𝑃𝑆)) · (𝑁 / (𝑃𝑇)))))
13796, 136sylbid 149 . . 3 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑆 + 𝑇) < 𝑈𝑃 ∥ ((𝑀 / (𝑃𝑆)) · (𝑁 / (𝑃𝑇)))))
13891, 137mtod 658 . 2 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ (𝑆 + 𝑇) < 𝑈)
13944nn0red 9189 . . 3 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 + 𝑇) ∈ ℝ)
14094nn0red 9189 . . 3 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑈 ∈ ℝ)
141139, 140eqleltd 8036 . 2 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑆 + 𝑇) = 𝑈 ↔ ((𝑆 + 𝑇) ≤ 𝑈 ∧ ¬ (𝑆 + 𝑇) < 𝑈)))
14273, 138, 141mpbir2and 939 1 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 + 𝑇) = 𝑈)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 703  DECID wdc 829  w3a 973   = wceq 1348  wcel 2141  wne 2340  wral 2448  wrex 2449  {crab 2452  wss 3121   class class class wbr 3989  cfv 5198  (class class class)co 5853  supcsup 6959  cr 7773  0cc0 7774  1c1 7775   + caddc 7777   · cmul 7779   < clt 7954  cle 7955   # cap 8500   / cdiv 8589  cn 8878  2c2 8929  0cn0 9135  cz 9212  cuz 9487  cexp 10475  cdvds 11749  cprime 12061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-1o 6395  df-2o 6396  df-er 6513  df-en 6719  df-sup 6961  df-inf 6962  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fzo 10099  df-fl 10226  df-mod 10279  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-dvds 11750  df-gcd 11898  df-prm 12062
This theorem is referenced by:  pceulem  12248  pcmul  12255
  Copyright terms: Public domain W3C validator