| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > focdmex | GIF version | ||
| Description: If the domain of an onto function exists, so does its codomain. (Contributed by NM, 23-Jul-2004.) |
| Ref | Expression |
|---|---|
| focdmex | ⊢ (𝐴 ∈ 𝐶 → (𝐹:𝐴–onto→𝐵 → 𝐵 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fofun 5511 | . . . 4 ⊢ (𝐹:𝐴–onto→𝐵 → Fun 𝐹) | |
| 2 | funrnex 6212 | . . . 4 ⊢ (dom 𝐹 ∈ 𝐶 → (Fun 𝐹 → ran 𝐹 ∈ V)) | |
| 3 | 1, 2 | syl5com 29 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → (dom 𝐹 ∈ 𝐶 → ran 𝐹 ∈ V)) |
| 4 | fof 5510 | . . . . 5 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
| 5 | fdm 5441 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
| 6 | 4, 5 | syl 14 | . . . 4 ⊢ (𝐹:𝐴–onto→𝐵 → dom 𝐹 = 𝐴) |
| 7 | 6 | eleq1d 2275 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → (dom 𝐹 ∈ 𝐶 ↔ 𝐴 ∈ 𝐶)) |
| 8 | forn 5513 | . . . 4 ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) | |
| 9 | 8 | eleq1d 2275 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → (ran 𝐹 ∈ V ↔ 𝐵 ∈ V)) |
| 10 | 3, 7, 9 | 3imtr3d 202 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → (𝐴 ∈ 𝐶 → 𝐵 ∈ V)) |
| 11 | 10 | com12 30 | 1 ⊢ (𝐴 ∈ 𝐶 → (𝐹:𝐴–onto→𝐵 → 𝐵 ∈ V)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 Vcvv 2773 dom cdm 4683 ran crn 4684 Fun wfun 5274 ⟶wf 5276 –onto→wfo 5278 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 |
| This theorem is referenced by: f1dmex 6214 f1oeng 6861 ctfoex 7235 ennnfonelemj0 12847 ennnfonelemg 12849 omctfn 12889 imasival 13213 imasbas 13214 imasplusg 13215 |
| Copyright terms: Public domain | W3C validator |