ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgrelemcau GIF version

Theorem caucvgrelemcau 11457
Description: Lemma for caucvgre 11458. Converting the Cauchy condition. (Contributed by Jim Kingdon, 20-Jul-2021.)
Hypotheses
Ref Expression
caucvgre.f (𝜑𝐹:ℕ⟶ℝ)
caucvgre.cau (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛))))
Assertion
Ref Expression
caucvgrelemcau (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ ℕ (𝑛 < 𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)))))
Distinct variable groups:   𝑘,𝐹,𝑛   𝜑,𝑘,𝑛   𝑘,𝑟,𝑛
Allowed substitution hints:   𝜑(𝑟)   𝐹(𝑟)

Proof of Theorem caucvgrelemcau
StepHypRef Expression
1 simplr 528 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 𝑛 ∈ ℕ)
21nnred 9091 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 𝑛 ∈ ℝ)
3 simpr 110 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
43nnred 9091 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ)
5 ltle 8202 . . . . . 6 ((𝑛 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝑛 < 𝑘𝑛𝑘))
62, 4, 5syl2anc 411 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝑛 < 𝑘𝑛𝑘))
7 eluznn 9763 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑘 ∈ ℕ)
87ex 115 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝑘 ∈ (ℤ𝑛) → 𝑘 ∈ ℕ))
9 nnz 9433 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
10 eluz1 9694 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → (𝑘 ∈ (ℤ𝑛) ↔ (𝑘 ∈ ℤ ∧ 𝑛𝑘)))
119, 10syl 14 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (𝑘 ∈ (ℤ𝑛) ↔ (𝑘 ∈ ℤ ∧ 𝑛𝑘)))
12 simpr 110 . . . . . . . . . . . 12 ((𝑘 ∈ ℤ ∧ 𝑛𝑘) → 𝑛𝑘)
1311, 12biimtrdi 163 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝑘 ∈ (ℤ𝑛) → 𝑛𝑘))
148, 13jcad 307 . . . . . . . . . 10 (𝑛 ∈ ℕ → (𝑘 ∈ (ℤ𝑛) → (𝑘 ∈ ℕ ∧ 𝑛𝑘)))
15 nnz 9433 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
1615anim1i 340 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝑛𝑘) → (𝑘 ∈ ℤ ∧ 𝑛𝑘))
1716, 11imbitrrid 156 . . . . . . . . . 10 (𝑛 ∈ ℕ → ((𝑘 ∈ ℕ ∧ 𝑛𝑘) → 𝑘 ∈ (ℤ𝑛)))
1814, 17impbid 129 . . . . . . . . 9 (𝑛 ∈ ℕ → (𝑘 ∈ (ℤ𝑛) ↔ (𝑘 ∈ ℕ ∧ 𝑛𝑘)))
1918adantl 277 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑘 ∈ (ℤ𝑛) ↔ (𝑘 ∈ ℕ ∧ 𝑛𝑘)))
2019biimpar 297 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℕ ∧ 𝑛𝑘)) → 𝑘 ∈ (ℤ𝑛))
21 caucvgre.cau . . . . . . . . 9 (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛))))
2221r19.21bi 2598 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛))))
2322r19.21bi 2598 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛))))
2420, 23syldan 282 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℕ ∧ 𝑛𝑘)) → ((𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛))))
2524expr 375 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝑛𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛)))))
266, 25syld 45 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝑛 < 𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛)))))
27 ltxrlt 8180 . . . . 5 ((𝑛 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝑛 < 𝑘𝑛 < 𝑘))
282, 4, 27syl2anc 411 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝑛 < 𝑘𝑛 < 𝑘))
29 caucvgre.f . . . . . . . . 9 (𝜑𝐹:ℕ⟶ℝ)
3029ad2antrr 488 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 𝐹:ℕ⟶ℝ)
3130, 1ffvelcdmd 5744 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝐹𝑛) ∈ ℝ)
3230, 3ffvelcdmd 5744 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
331nnrecred 9125 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
3432, 33readdcld 8144 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑘) + (1 / 𝑛)) ∈ ℝ)
35 ltxrlt 8180 . . . . . . 7 (((𝐹𝑛) ∈ ℝ ∧ ((𝐹𝑘) + (1 / 𝑛)) ∈ ℝ) → ((𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛)) ↔ (𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛))))
3631, 34, 35syl2anc 411 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛)) ↔ (𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛))))
37 nnap0 9107 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 # 0)
381, 37syl 14 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 𝑛 # 0)
39 caucvgrelemrec 11456 . . . . . . . . 9 ((𝑛 ∈ ℝ ∧ 𝑛 # 0) → (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1) = (1 / 𝑛))
402, 38, 39syl2anc 411 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1) = (1 / 𝑛))
4140oveq2d 5990 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) = ((𝐹𝑘) + (1 / 𝑛)))
4241breq2d 4074 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ↔ (𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛))))
4336, 42bitr4d 191 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛)) ↔ (𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1))))
4431, 33readdcld 8144 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑛) + (1 / 𝑛)) ∈ ℝ)
45 ltxrlt 8180 . . . . . . 7 (((𝐹𝑘) ∈ ℝ ∧ ((𝐹𝑛) + (1 / 𝑛)) ∈ ℝ) → ((𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛)) ↔ (𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛))))
4632, 44, 45syl2anc 411 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛)) ↔ (𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛))))
4740oveq2d 5990 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) = ((𝐹𝑛) + (1 / 𝑛)))
4847breq2d 4074 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ↔ (𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛))))
4946, 48bitr4d 191 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛)) ↔ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1))))
5043, 49anbi12d 473 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (((𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛))) ↔ ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)))))
5126, 28, 503imtr3d 202 . . 3 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝑛 < 𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)))))
5251ralrimiva 2583 . 2 ((𝜑𝑛 ∈ ℕ) → ∀𝑘 ∈ ℕ (𝑛 < 𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)))))
5352ralrimiva 2583 1 (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ ℕ (𝑛 < 𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1375  wcel 2180  wral 2488   class class class wbr 4062  wf 5290  cfv 5294  crio 5926  (class class class)co 5974  cr 7966  0cc0 7967  1c1 7968   + caddc 7970   < cltrr 7971   · cmul 7972   < clt 8149  cle 8150   # cap 8696   / cdiv 8787  cn 9078  cz 9414  cuz 9690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085
This theorem depends on definitions:  df-bi 117  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-po 4364  df-iso 4365  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-z 9415  df-uz 9691
This theorem is referenced by:  caucvgre  11458
  Copyright terms: Public domain W3C validator