ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgrelemcau GIF version

Theorem caucvgrelemcau 11162
Description: Lemma for caucvgre 11163. Converting the Cauchy condition. (Contributed by Jim Kingdon, 20-Jul-2021.)
Hypotheses
Ref Expression
caucvgre.f (𝜑𝐹:ℕ⟶ℝ)
caucvgre.cau (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛))))
Assertion
Ref Expression
caucvgrelemcau (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ ℕ (𝑛 < 𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)))))
Distinct variable groups:   𝑘,𝐹,𝑛   𝜑,𝑘,𝑛   𝑘,𝑟,𝑛
Allowed substitution hints:   𝜑(𝑟)   𝐹(𝑟)

Proof of Theorem caucvgrelemcau
StepHypRef Expression
1 simplr 528 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 𝑛 ∈ ℕ)
21nnred 9020 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 𝑛 ∈ ℝ)
3 simpr 110 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
43nnred 9020 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ)
5 ltle 8131 . . . . . 6 ((𝑛 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝑛 < 𝑘𝑛𝑘))
62, 4, 5syl2anc 411 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝑛 < 𝑘𝑛𝑘))
7 eluznn 9691 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑘 ∈ ℕ)
87ex 115 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝑘 ∈ (ℤ𝑛) → 𝑘 ∈ ℕ))
9 nnz 9362 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
10 eluz1 9622 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → (𝑘 ∈ (ℤ𝑛) ↔ (𝑘 ∈ ℤ ∧ 𝑛𝑘)))
119, 10syl 14 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (𝑘 ∈ (ℤ𝑛) ↔ (𝑘 ∈ ℤ ∧ 𝑛𝑘)))
12 simpr 110 . . . . . . . . . . . 12 ((𝑘 ∈ ℤ ∧ 𝑛𝑘) → 𝑛𝑘)
1311, 12biimtrdi 163 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝑘 ∈ (ℤ𝑛) → 𝑛𝑘))
148, 13jcad 307 . . . . . . . . . 10 (𝑛 ∈ ℕ → (𝑘 ∈ (ℤ𝑛) → (𝑘 ∈ ℕ ∧ 𝑛𝑘)))
15 nnz 9362 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
1615anim1i 340 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝑛𝑘) → (𝑘 ∈ ℤ ∧ 𝑛𝑘))
1716, 11imbitrrid 156 . . . . . . . . . 10 (𝑛 ∈ ℕ → ((𝑘 ∈ ℕ ∧ 𝑛𝑘) → 𝑘 ∈ (ℤ𝑛)))
1814, 17impbid 129 . . . . . . . . 9 (𝑛 ∈ ℕ → (𝑘 ∈ (ℤ𝑛) ↔ (𝑘 ∈ ℕ ∧ 𝑛𝑘)))
1918adantl 277 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑘 ∈ (ℤ𝑛) ↔ (𝑘 ∈ ℕ ∧ 𝑛𝑘)))
2019biimpar 297 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℕ ∧ 𝑛𝑘)) → 𝑘 ∈ (ℤ𝑛))
21 caucvgre.cau . . . . . . . . 9 (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛))))
2221r19.21bi 2585 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛))))
2322r19.21bi 2585 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛))))
2420, 23syldan 282 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℕ ∧ 𝑛𝑘)) → ((𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛))))
2524expr 375 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝑛𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛)))))
266, 25syld 45 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝑛 < 𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛)))))
27 ltxrlt 8109 . . . . 5 ((𝑛 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝑛 < 𝑘𝑛 < 𝑘))
282, 4, 27syl2anc 411 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝑛 < 𝑘𝑛 < 𝑘))
29 caucvgre.f . . . . . . . . 9 (𝜑𝐹:ℕ⟶ℝ)
3029ad2antrr 488 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 𝐹:ℕ⟶ℝ)
3130, 1ffvelcdmd 5701 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝐹𝑛) ∈ ℝ)
3230, 3ffvelcdmd 5701 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
331nnrecred 9054 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
3432, 33readdcld 8073 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑘) + (1 / 𝑛)) ∈ ℝ)
35 ltxrlt 8109 . . . . . . 7 (((𝐹𝑛) ∈ ℝ ∧ ((𝐹𝑘) + (1 / 𝑛)) ∈ ℝ) → ((𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛)) ↔ (𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛))))
3631, 34, 35syl2anc 411 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛)) ↔ (𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛))))
37 nnap0 9036 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 # 0)
381, 37syl 14 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 𝑛 # 0)
39 caucvgrelemrec 11161 . . . . . . . . 9 ((𝑛 ∈ ℝ ∧ 𝑛 # 0) → (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1) = (1 / 𝑛))
402, 38, 39syl2anc 411 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1) = (1 / 𝑛))
4140oveq2d 5941 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) = ((𝐹𝑘) + (1 / 𝑛)))
4241breq2d 4046 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ↔ (𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛))))
4336, 42bitr4d 191 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛)) ↔ (𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1))))
4431, 33readdcld 8073 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑛) + (1 / 𝑛)) ∈ ℝ)
45 ltxrlt 8109 . . . . . . 7 (((𝐹𝑘) ∈ ℝ ∧ ((𝐹𝑛) + (1 / 𝑛)) ∈ ℝ) → ((𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛)) ↔ (𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛))))
4632, 44, 45syl2anc 411 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛)) ↔ (𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛))))
4740oveq2d 5941 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) = ((𝐹𝑛) + (1 / 𝑛)))
4847breq2d 4046 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ↔ (𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛))))
4946, 48bitr4d 191 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛)) ↔ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1))))
5043, 49anbi12d 473 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (((𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛))) ↔ ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)))))
5126, 28, 503imtr3d 202 . . 3 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝑛 < 𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)))))
5251ralrimiva 2570 . 2 ((𝜑𝑛 ∈ ℕ) → ∀𝑘 ∈ ℕ (𝑛 < 𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)))))
5352ralrimiva 2570 1 (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ ℕ (𝑛 < 𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wral 2475   class class class wbr 4034  wf 5255  cfv 5259  crio 5879  (class class class)co 5925  cr 7895  0cc0 7896  1c1 7897   + caddc 7899   < cltrr 7900   · cmul 7901   < clt 8078  cle 8079   # cap 8625   / cdiv 8716  cn 9007  cz 9343  cuz 9618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-z 9344  df-uz 9619
This theorem is referenced by:  caucvgre  11163
  Copyright terms: Public domain W3C validator