ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgrelemcau GIF version

Theorem caucvgrelemcau 10922
Description: Lemma for caucvgre 10923. Converting the Cauchy condition. (Contributed by Jim Kingdon, 20-Jul-2021.)
Hypotheses
Ref Expression
caucvgre.f (𝜑𝐹:ℕ⟶ℝ)
caucvgre.cau (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛))))
Assertion
Ref Expression
caucvgrelemcau (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ ℕ (𝑛 < 𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)))))
Distinct variable groups:   𝑘,𝐹,𝑛   𝜑,𝑘,𝑛   𝑘,𝑟,𝑛
Allowed substitution hints:   𝜑(𝑟)   𝐹(𝑟)

Proof of Theorem caucvgrelemcau
StepHypRef Expression
1 simplr 520 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 𝑛 ∈ ℕ)
21nnred 8870 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 𝑛 ∈ ℝ)
3 simpr 109 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
43nnred 8870 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ)
5 ltle 7986 . . . . . 6 ((𝑛 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝑛 < 𝑘𝑛𝑘))
62, 4, 5syl2anc 409 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝑛 < 𝑘𝑛𝑘))
7 eluznn 9538 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑘 ∈ ℕ)
87ex 114 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝑘 ∈ (ℤ𝑛) → 𝑘 ∈ ℕ))
9 nnz 9210 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
10 eluz1 9470 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → (𝑘 ∈ (ℤ𝑛) ↔ (𝑘 ∈ ℤ ∧ 𝑛𝑘)))
119, 10syl 14 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (𝑘 ∈ (ℤ𝑛) ↔ (𝑘 ∈ ℤ ∧ 𝑛𝑘)))
12 simpr 109 . . . . . . . . . . . 12 ((𝑘 ∈ ℤ ∧ 𝑛𝑘) → 𝑛𝑘)
1311, 12syl6bi 162 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝑘 ∈ (ℤ𝑛) → 𝑛𝑘))
148, 13jcad 305 . . . . . . . . . 10 (𝑛 ∈ ℕ → (𝑘 ∈ (ℤ𝑛) → (𝑘 ∈ ℕ ∧ 𝑛𝑘)))
15 nnz 9210 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
1615anim1i 338 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝑛𝑘) → (𝑘 ∈ ℤ ∧ 𝑛𝑘))
1716, 11syl5ibr 155 . . . . . . . . . 10 (𝑛 ∈ ℕ → ((𝑘 ∈ ℕ ∧ 𝑛𝑘) → 𝑘 ∈ (ℤ𝑛)))
1814, 17impbid 128 . . . . . . . . 9 (𝑛 ∈ ℕ → (𝑘 ∈ (ℤ𝑛) ↔ (𝑘 ∈ ℕ ∧ 𝑛𝑘)))
1918adantl 275 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑘 ∈ (ℤ𝑛) ↔ (𝑘 ∈ ℕ ∧ 𝑛𝑘)))
2019biimpar 295 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℕ ∧ 𝑛𝑘)) → 𝑘 ∈ (ℤ𝑛))
21 caucvgre.cau . . . . . . . . 9 (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛))))
2221r19.21bi 2554 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛))))
2322r19.21bi 2554 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛))))
2420, 23syldan 280 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℕ ∧ 𝑛𝑘)) → ((𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛))))
2524expr 373 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝑛𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛)))))
266, 25syld 45 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝑛 < 𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛)))))
27 ltxrlt 7964 . . . . 5 ((𝑛 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝑛 < 𝑘𝑛 < 𝑘))
282, 4, 27syl2anc 409 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝑛 < 𝑘𝑛 < 𝑘))
29 caucvgre.f . . . . . . . . 9 (𝜑𝐹:ℕ⟶ℝ)
3029ad2antrr 480 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 𝐹:ℕ⟶ℝ)
3130, 1ffvelrnd 5621 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝐹𝑛) ∈ ℝ)
3230, 3ffvelrnd 5621 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
331nnrecred 8904 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
3432, 33readdcld 7928 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑘) + (1 / 𝑛)) ∈ ℝ)
35 ltxrlt 7964 . . . . . . 7 (((𝐹𝑛) ∈ ℝ ∧ ((𝐹𝑘) + (1 / 𝑛)) ∈ ℝ) → ((𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛)) ↔ (𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛))))
3631, 34, 35syl2anc 409 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛)) ↔ (𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛))))
37 nnap0 8886 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 # 0)
381, 37syl 14 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 𝑛 # 0)
39 caucvgrelemrec 10921 . . . . . . . . 9 ((𝑛 ∈ ℝ ∧ 𝑛 # 0) → (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1) = (1 / 𝑛))
402, 38, 39syl2anc 409 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1) = (1 / 𝑛))
4140oveq2d 5858 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) = ((𝐹𝑘) + (1 / 𝑛)))
4241breq2d 3994 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ↔ (𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛))))
4336, 42bitr4d 190 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛)) ↔ (𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1))))
4431, 33readdcld 7928 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑛) + (1 / 𝑛)) ∈ ℝ)
45 ltxrlt 7964 . . . . . . 7 (((𝐹𝑘) ∈ ℝ ∧ ((𝐹𝑛) + (1 / 𝑛)) ∈ ℝ) → ((𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛)) ↔ (𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛))))
4632, 44, 45syl2anc 409 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛)) ↔ (𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛))))
4740oveq2d 5858 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) = ((𝐹𝑛) + (1 / 𝑛)))
4847breq2d 3994 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ↔ (𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛))))
4946, 48bitr4d 190 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛)) ↔ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1))))
5043, 49anbi12d 465 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (((𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛))) ↔ ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)))))
5126, 28, 503imtr3d 201 . . 3 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝑛 < 𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)))))
5251ralrimiva 2539 . 2 ((𝜑𝑛 ∈ ℕ) → ∀𝑘 ∈ ℕ (𝑛 < 𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)))))
5352ralrimiva 2539 1 (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ ℕ (𝑛 < 𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wcel 2136  wral 2444   class class class wbr 3982  wf 5184  cfv 5188  crio 5797  (class class class)co 5842  cr 7752  0cc0 7753  1c1 7754   + caddc 7756   < cltrr 7757   · cmul 7758   < clt 7933  cle 7934   # cap 8479   / cdiv 8568  cn 8857  cz 9191  cuz 9466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-po 4274  df-iso 4275  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-z 9192  df-uz 9467
This theorem is referenced by:  caucvgre  10923
  Copyright terms: Public domain W3C validator