Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgrelemcau GIF version

Theorem caucvgrelemcau 10745
 Description: Lemma for caucvgre 10746. Converting the Cauchy condition. (Contributed by Jim Kingdon, 20-Jul-2021.)
Hypotheses
Ref Expression
caucvgre.f (𝜑𝐹:ℕ⟶ℝ)
caucvgre.cau (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛))))
Assertion
Ref Expression
caucvgrelemcau (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ ℕ (𝑛 < 𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)))))
Distinct variable groups:   𝑘,𝐹,𝑛   𝜑,𝑘,𝑛   𝑘,𝑟,𝑛
Allowed substitution hints:   𝜑(𝑟)   𝐹(𝑟)

Proof of Theorem caucvgrelemcau
StepHypRef Expression
1 simplr 519 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 𝑛 ∈ ℕ)
21nnred 8726 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 𝑛 ∈ ℝ)
3 simpr 109 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
43nnred 8726 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ)
5 ltle 7844 . . . . . 6 ((𝑛 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝑛 < 𝑘𝑛𝑘))
62, 4, 5syl2anc 408 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝑛 < 𝑘𝑛𝑘))
7 eluznn 9387 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑘 ∈ ℕ)
87ex 114 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝑘 ∈ (ℤ𝑛) → 𝑘 ∈ ℕ))
9 nnz 9066 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
10 eluz1 9323 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → (𝑘 ∈ (ℤ𝑛) ↔ (𝑘 ∈ ℤ ∧ 𝑛𝑘)))
119, 10syl 14 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (𝑘 ∈ (ℤ𝑛) ↔ (𝑘 ∈ ℤ ∧ 𝑛𝑘)))
12 simpr 109 . . . . . . . . . . . 12 ((𝑘 ∈ ℤ ∧ 𝑛𝑘) → 𝑛𝑘)
1311, 12syl6bi 162 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝑘 ∈ (ℤ𝑛) → 𝑛𝑘))
148, 13jcad 305 . . . . . . . . . 10 (𝑛 ∈ ℕ → (𝑘 ∈ (ℤ𝑛) → (𝑘 ∈ ℕ ∧ 𝑛𝑘)))
15 nnz 9066 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
1615anim1i 338 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝑛𝑘) → (𝑘 ∈ ℤ ∧ 𝑛𝑘))
1716, 11syl5ibr 155 . . . . . . . . . 10 (𝑛 ∈ ℕ → ((𝑘 ∈ ℕ ∧ 𝑛𝑘) → 𝑘 ∈ (ℤ𝑛)))
1814, 17impbid 128 . . . . . . . . 9 (𝑛 ∈ ℕ → (𝑘 ∈ (ℤ𝑛) ↔ (𝑘 ∈ ℕ ∧ 𝑛𝑘)))
1918adantl 275 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑘 ∈ (ℤ𝑛) ↔ (𝑘 ∈ ℕ ∧ 𝑛𝑘)))
2019biimpar 295 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℕ ∧ 𝑛𝑘)) → 𝑘 ∈ (ℤ𝑛))
21 caucvgre.cau . . . . . . . . 9 (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛))))
2221r19.21bi 2518 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛))))
2322r19.21bi 2518 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛))))
2420, 23syldan 280 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℕ ∧ 𝑛𝑘)) → ((𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛))))
2524expr 372 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝑛𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛)))))
266, 25syld 45 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝑛 < 𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛)))))
27 ltxrlt 7823 . . . . 5 ((𝑛 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝑛 < 𝑘𝑛 < 𝑘))
282, 4, 27syl2anc 408 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝑛 < 𝑘𝑛 < 𝑘))
29 caucvgre.f . . . . . . . . 9 (𝜑𝐹:ℕ⟶ℝ)
3029ad2antrr 479 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 𝐹:ℕ⟶ℝ)
3130, 1ffvelrnd 5549 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝐹𝑛) ∈ ℝ)
3230, 3ffvelrnd 5549 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
331nnrecred 8760 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
3432, 33readdcld 7788 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑘) + (1 / 𝑛)) ∈ ℝ)
35 ltxrlt 7823 . . . . . . 7 (((𝐹𝑛) ∈ ℝ ∧ ((𝐹𝑘) + (1 / 𝑛)) ∈ ℝ) → ((𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛)) ↔ (𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛))))
3631, 34, 35syl2anc 408 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛)) ↔ (𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛))))
37 nnap0 8742 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 # 0)
381, 37syl 14 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 𝑛 # 0)
39 caucvgrelemrec 10744 . . . . . . . . 9 ((𝑛 ∈ ℝ ∧ 𝑛 # 0) → (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1) = (1 / 𝑛))
402, 38, 39syl2anc 408 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1) = (1 / 𝑛))
4140oveq2d 5783 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) = ((𝐹𝑘) + (1 / 𝑛)))
4241breq2d 3936 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ↔ (𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛))))
4336, 42bitr4d 190 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛)) ↔ (𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1))))
4431, 33readdcld 7788 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑛) + (1 / 𝑛)) ∈ ℝ)
45 ltxrlt 7823 . . . . . . 7 (((𝐹𝑘) ∈ ℝ ∧ ((𝐹𝑛) + (1 / 𝑛)) ∈ ℝ) → ((𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛)) ↔ (𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛))))
4632, 44, 45syl2anc 408 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛)) ↔ (𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛))))
4740oveq2d 5783 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) = ((𝐹𝑛) + (1 / 𝑛)))
4847breq2d 3936 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ↔ (𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛))))
4946, 48bitr4d 190 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛)) ↔ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1))))
5043, 49anbi12d 464 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (((𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛))) ↔ ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)))))
5126, 28, 503imtr3d 201 . . 3 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝑛 < 𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)))))
5251ralrimiva 2503 . 2 ((𝜑𝑛 ∈ ℕ) → ∀𝑘 ∈ ℕ (𝑛 < 𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)))))
5352ralrimiva 2503 1 (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ ℕ (𝑛 < 𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)))))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   = wceq 1331   ∈ wcel 1480  ∀wral 2414   class class class wbr 3924  ⟶wf 5114  ‘cfv 5118  ℩crio 5722  (class class class)co 5767  ℝcr 7612  0cc0 7613  1c1 7614   + caddc 7616   <ℝ cltrr 7617   · cmul 7618   < clt 7793   ≤ cle 7794   # cap 8336   / cdiv 8425  ℕcn 8713  ℤcz 9047  ℤ≥cuz 9319 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731 This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-po 4213  df-iso 4214  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-z 9048  df-uz 9320 This theorem is referenced by:  caucvgre  10746
 Copyright terms: Public domain W3C validator