ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgrelemcau GIF version

Theorem caucvgrelemcau 11335
Description: Lemma for caucvgre 11336. Converting the Cauchy condition. (Contributed by Jim Kingdon, 20-Jul-2021.)
Hypotheses
Ref Expression
caucvgre.f (𝜑𝐹:ℕ⟶ℝ)
caucvgre.cau (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛))))
Assertion
Ref Expression
caucvgrelemcau (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ ℕ (𝑛 < 𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)))))
Distinct variable groups:   𝑘,𝐹,𝑛   𝜑,𝑘,𝑛   𝑘,𝑟,𝑛
Allowed substitution hints:   𝜑(𝑟)   𝐹(𝑟)

Proof of Theorem caucvgrelemcau
StepHypRef Expression
1 simplr 528 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 𝑛 ∈ ℕ)
21nnred 9056 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 𝑛 ∈ ℝ)
3 simpr 110 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
43nnred 9056 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ)
5 ltle 8167 . . . . . 6 ((𝑛 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝑛 < 𝑘𝑛𝑘))
62, 4, 5syl2anc 411 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝑛 < 𝑘𝑛𝑘))
7 eluznn 9728 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑘 ∈ ℕ)
87ex 115 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝑘 ∈ (ℤ𝑛) → 𝑘 ∈ ℕ))
9 nnz 9398 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
10 eluz1 9659 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → (𝑘 ∈ (ℤ𝑛) ↔ (𝑘 ∈ ℤ ∧ 𝑛𝑘)))
119, 10syl 14 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (𝑘 ∈ (ℤ𝑛) ↔ (𝑘 ∈ ℤ ∧ 𝑛𝑘)))
12 simpr 110 . . . . . . . . . . . 12 ((𝑘 ∈ ℤ ∧ 𝑛𝑘) → 𝑛𝑘)
1311, 12biimtrdi 163 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝑘 ∈ (ℤ𝑛) → 𝑛𝑘))
148, 13jcad 307 . . . . . . . . . 10 (𝑛 ∈ ℕ → (𝑘 ∈ (ℤ𝑛) → (𝑘 ∈ ℕ ∧ 𝑛𝑘)))
15 nnz 9398 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
1615anim1i 340 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝑛𝑘) → (𝑘 ∈ ℤ ∧ 𝑛𝑘))
1716, 11imbitrrid 156 . . . . . . . . . 10 (𝑛 ∈ ℕ → ((𝑘 ∈ ℕ ∧ 𝑛𝑘) → 𝑘 ∈ (ℤ𝑛)))
1814, 17impbid 129 . . . . . . . . 9 (𝑛 ∈ ℕ → (𝑘 ∈ (ℤ𝑛) ↔ (𝑘 ∈ ℕ ∧ 𝑛𝑘)))
1918adantl 277 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑘 ∈ (ℤ𝑛) ↔ (𝑘 ∈ ℕ ∧ 𝑛𝑘)))
2019biimpar 297 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℕ ∧ 𝑛𝑘)) → 𝑘 ∈ (ℤ𝑛))
21 caucvgre.cau . . . . . . . . 9 (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛))))
2221r19.21bi 2595 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛))))
2322r19.21bi 2595 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛))))
2420, 23syldan 282 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℕ ∧ 𝑛𝑘)) → ((𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛))))
2524expr 375 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝑛𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛)))))
266, 25syld 45 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝑛 < 𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛)))))
27 ltxrlt 8145 . . . . 5 ((𝑛 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝑛 < 𝑘𝑛 < 𝑘))
282, 4, 27syl2anc 411 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝑛 < 𝑘𝑛 < 𝑘))
29 caucvgre.f . . . . . . . . 9 (𝜑𝐹:ℕ⟶ℝ)
3029ad2antrr 488 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 𝐹:ℕ⟶ℝ)
3130, 1ffvelcdmd 5723 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝐹𝑛) ∈ ℝ)
3230, 3ffvelcdmd 5723 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
331nnrecred 9090 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
3432, 33readdcld 8109 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑘) + (1 / 𝑛)) ∈ ℝ)
35 ltxrlt 8145 . . . . . . 7 (((𝐹𝑛) ∈ ℝ ∧ ((𝐹𝑘) + (1 / 𝑛)) ∈ ℝ) → ((𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛)) ↔ (𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛))))
3631, 34, 35syl2anc 411 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛)) ↔ (𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛))))
37 nnap0 9072 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 # 0)
381, 37syl 14 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 𝑛 # 0)
39 caucvgrelemrec 11334 . . . . . . . . 9 ((𝑛 ∈ ℝ ∧ 𝑛 # 0) → (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1) = (1 / 𝑛))
402, 38, 39syl2anc 411 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1) = (1 / 𝑛))
4140oveq2d 5967 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) = ((𝐹𝑘) + (1 / 𝑛)))
4241breq2d 4059 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ↔ (𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛))))
4336, 42bitr4d 191 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛)) ↔ (𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1))))
4431, 33readdcld 8109 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑛) + (1 / 𝑛)) ∈ ℝ)
45 ltxrlt 8145 . . . . . . 7 (((𝐹𝑘) ∈ ℝ ∧ ((𝐹𝑛) + (1 / 𝑛)) ∈ ℝ) → ((𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛)) ↔ (𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛))))
4632, 44, 45syl2anc 411 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛)) ↔ (𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛))))
4740oveq2d 5967 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) = ((𝐹𝑛) + (1 / 𝑛)))
4847breq2d 4059 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ↔ (𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛))))
4946, 48bitr4d 191 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛)) ↔ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1))))
5043, 49anbi12d 473 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (((𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛))) ↔ ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)))))
5126, 28, 503imtr3d 202 . . 3 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝑛 < 𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)))))
5251ralrimiva 2580 . 2 ((𝜑𝑛 ∈ ℕ) → ∀𝑘 ∈ ℕ (𝑛 < 𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)))))
5352ralrimiva 2580 1 (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ ℕ (𝑛 < 𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  wral 2485   class class class wbr 4047  wf 5272  cfv 5276  crio 5905  (class class class)co 5951  cr 7931  0cc0 7932  1c1 7933   + caddc 7935   < cltrr 7936   · cmul 7937   < clt 8114  cle 8115   # cap 8661   / cdiv 8752  cn 9043  cz 9379  cuz 9655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-po 4347  df-iso 4348  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-z 9380  df-uz 9656
This theorem is referenced by:  caucvgre  11336
  Copyright terms: Public domain W3C validator