Proof of Theorem caucvgrelemcau
| Step | Hyp | Ref
| Expression |
| 1 | | simplr 528 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 𝑛 ∈ ℕ) |
| 2 | 1 | nnred 9003 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 𝑛 ∈ ℝ) |
| 3 | | simpr 110 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ) |
| 4 | 3 | nnred 9003 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ) |
| 5 | | ltle 8114 |
. . . . . 6
⊢ ((𝑛 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝑛 < 𝑘 → 𝑛 ≤ 𝑘)) |
| 6 | 2, 4, 5 | syl2anc 411 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝑛 < 𝑘 → 𝑛 ≤ 𝑘)) |
| 7 | | eluznn 9674 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ ℕ ∧ 𝑘 ∈
(ℤ≥‘𝑛)) → 𝑘 ∈ ℕ) |
| 8 | 7 | ex 115 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ → (𝑘 ∈
(ℤ≥‘𝑛) → 𝑘 ∈ ℕ)) |
| 9 | | nnz 9345 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℤ) |
| 10 | | eluz1 9605 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℤ → (𝑘 ∈
(ℤ≥‘𝑛) ↔ (𝑘 ∈ ℤ ∧ 𝑛 ≤ 𝑘))) |
| 11 | 9, 10 | syl 14 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ → (𝑘 ∈
(ℤ≥‘𝑛) ↔ (𝑘 ∈ ℤ ∧ 𝑛 ≤ 𝑘))) |
| 12 | | simpr 110 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ ℤ ∧ 𝑛 ≤ 𝑘) → 𝑛 ≤ 𝑘) |
| 13 | 11, 12 | biimtrdi 163 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ → (𝑘 ∈
(ℤ≥‘𝑛) → 𝑛 ≤ 𝑘)) |
| 14 | 8, 13 | jcad 307 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ → (𝑘 ∈
(ℤ≥‘𝑛) → (𝑘 ∈ ℕ ∧ 𝑛 ≤ 𝑘))) |
| 15 | | nnz 9345 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℤ) |
| 16 | 15 | anim1i 340 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ ℕ ∧ 𝑛 ≤ 𝑘) → (𝑘 ∈ ℤ ∧ 𝑛 ≤ 𝑘)) |
| 17 | 16, 11 | imbitrrid 156 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ → ((𝑘 ∈ ℕ ∧ 𝑛 ≤ 𝑘) → 𝑘 ∈ (ℤ≥‘𝑛))) |
| 18 | 14, 17 | impbid 129 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ → (𝑘 ∈
(ℤ≥‘𝑛) ↔ (𝑘 ∈ ℕ ∧ 𝑛 ≤ 𝑘))) |
| 19 | 18 | adantl 277 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑘 ∈ (ℤ≥‘𝑛) ↔ (𝑘 ∈ ℕ ∧ 𝑛 ≤ 𝑘))) |
| 20 | 19 | biimpar 297 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℕ ∧ 𝑛 ≤ 𝑘)) → 𝑘 ∈ (ℤ≥‘𝑛)) |
| 21 | | caucvgre.cau |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑛)((𝐹‘𝑛) < ((𝐹‘𝑘) + (1 / 𝑛)) ∧ (𝐹‘𝑘) < ((𝐹‘𝑛) + (1 / 𝑛)))) |
| 22 | 21 | r19.21bi 2585 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∀𝑘 ∈
(ℤ≥‘𝑛)((𝐹‘𝑛) < ((𝐹‘𝑘) + (1 / 𝑛)) ∧ (𝐹‘𝑘) < ((𝐹‘𝑛) + (1 / 𝑛)))) |
| 23 | 22 | r19.21bi 2585 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐹‘𝑛) < ((𝐹‘𝑘) + (1 / 𝑛)) ∧ (𝐹‘𝑘) < ((𝐹‘𝑛) + (1 / 𝑛)))) |
| 24 | 20, 23 | syldan 282 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℕ ∧ 𝑛 ≤ 𝑘)) → ((𝐹‘𝑛) < ((𝐹‘𝑘) + (1 / 𝑛)) ∧ (𝐹‘𝑘) < ((𝐹‘𝑛) + (1 / 𝑛)))) |
| 25 | 24 | expr 375 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝑛 ≤ 𝑘 → ((𝐹‘𝑛) < ((𝐹‘𝑘) + (1 / 𝑛)) ∧ (𝐹‘𝑘) < ((𝐹‘𝑛) + (1 / 𝑛))))) |
| 26 | 6, 25 | syld 45 |
. . . 4
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝑛 < 𝑘 → ((𝐹‘𝑛) < ((𝐹‘𝑘) + (1 / 𝑛)) ∧ (𝐹‘𝑘) < ((𝐹‘𝑛) + (1 / 𝑛))))) |
| 27 | | ltxrlt 8092 |
. . . . 5
⊢ ((𝑛 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝑛 < 𝑘 ↔ 𝑛 <ℝ 𝑘)) |
| 28 | 2, 4, 27 | syl2anc 411 |
. . . 4
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝑛 < 𝑘 ↔ 𝑛 <ℝ 𝑘)) |
| 29 | | caucvgre.f |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:ℕ⟶ℝ) |
| 30 | 29 | ad2antrr 488 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 𝐹:ℕ⟶ℝ) |
| 31 | 30, 1 | ffvelcdmd 5698 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑛) ∈ ℝ) |
| 32 | 30, 3 | ffvelcdmd 5698 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℝ) |
| 33 | 1 | nnrecred 9037 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (1 / 𝑛) ∈
ℝ) |
| 34 | 32, 33 | readdcld 8056 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑘) + (1 / 𝑛)) ∈ ℝ) |
| 35 | | ltxrlt 8092 |
. . . . . . 7
⊢ (((𝐹‘𝑛) ∈ ℝ ∧ ((𝐹‘𝑘) + (1 / 𝑛)) ∈ ℝ) → ((𝐹‘𝑛) < ((𝐹‘𝑘) + (1 / 𝑛)) ↔ (𝐹‘𝑛) <ℝ ((𝐹‘𝑘) + (1 / 𝑛)))) |
| 36 | 31, 34, 35 | syl2anc 411 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑛) < ((𝐹‘𝑘) + (1 / 𝑛)) ↔ (𝐹‘𝑛) <ℝ ((𝐹‘𝑘) + (1 / 𝑛)))) |
| 37 | | nnap0 9019 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ → 𝑛 # 0) |
| 38 | 1, 37 | syl 14 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 𝑛 # 0) |
| 39 | | caucvgrelemrec 11144 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℝ ∧ 𝑛 # 0) →
(℩𝑟 ∈
ℝ (𝑛 · 𝑟) = 1) = (1 / 𝑛)) |
| 40 | 2, 38, 39 | syl2anc 411 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1) = (1 / 𝑛)) |
| 41 | 40 | oveq2d 5938 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑘) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) = ((𝐹‘𝑘) + (1 / 𝑛))) |
| 42 | 41 | breq2d 4045 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑛) <ℝ ((𝐹‘𝑘) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ↔ (𝐹‘𝑛) <ℝ ((𝐹‘𝑘) + (1 / 𝑛)))) |
| 43 | 36, 42 | bitr4d 191 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑛) < ((𝐹‘𝑘) + (1 / 𝑛)) ↔ (𝐹‘𝑛) <ℝ ((𝐹‘𝑘) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)))) |
| 44 | 31, 33 | readdcld 8056 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑛) + (1 / 𝑛)) ∈ ℝ) |
| 45 | | ltxrlt 8092 |
. . . . . . 7
⊢ (((𝐹‘𝑘) ∈ ℝ ∧ ((𝐹‘𝑛) + (1 / 𝑛)) ∈ ℝ) → ((𝐹‘𝑘) < ((𝐹‘𝑛) + (1 / 𝑛)) ↔ (𝐹‘𝑘) <ℝ ((𝐹‘𝑛) + (1 / 𝑛)))) |
| 46 | 32, 44, 45 | syl2anc 411 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑘) < ((𝐹‘𝑛) + (1 / 𝑛)) ↔ (𝐹‘𝑘) <ℝ ((𝐹‘𝑛) + (1 / 𝑛)))) |
| 47 | 40 | oveq2d 5938 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑛) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) = ((𝐹‘𝑛) + (1 / 𝑛))) |
| 48 | 47 | breq2d 4045 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑘) <ℝ ((𝐹‘𝑛) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ↔ (𝐹‘𝑘) <ℝ ((𝐹‘𝑛) + (1 / 𝑛)))) |
| 49 | 46, 48 | bitr4d 191 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑘) < ((𝐹‘𝑛) + (1 / 𝑛)) ↔ (𝐹‘𝑘) <ℝ ((𝐹‘𝑛) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)))) |
| 50 | 43, 49 | anbi12d 473 |
. . . 4
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (((𝐹‘𝑛) < ((𝐹‘𝑘) + (1 / 𝑛)) ∧ (𝐹‘𝑘) < ((𝐹‘𝑛) + (1 / 𝑛))) ↔ ((𝐹‘𝑛) <ℝ ((𝐹‘𝑘) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹‘𝑘) <ℝ ((𝐹‘𝑛) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1))))) |
| 51 | 26, 28, 50 | 3imtr3d 202 |
. . 3
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝑛 <ℝ 𝑘 → ((𝐹‘𝑛) <ℝ ((𝐹‘𝑘) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹‘𝑘) <ℝ ((𝐹‘𝑛) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1))))) |
| 52 | 51 | ralrimiva 2570 |
. 2
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∀𝑘 ∈ ℕ (𝑛 <ℝ 𝑘 → ((𝐹‘𝑛) <ℝ ((𝐹‘𝑘) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹‘𝑘) <ℝ ((𝐹‘𝑛) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1))))) |
| 53 | 52 | ralrimiva 2570 |
1
⊢ (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ ℕ (𝑛 <ℝ 𝑘 → ((𝐹‘𝑛) <ℝ ((𝐹‘𝑘) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹‘𝑘) <ℝ ((𝐹‘𝑛) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1))))) |