| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elxr | GIF version | ||
| Description: Membership in the set of extended reals. (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| elxr | ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xr 8193 | . . 3 ⊢ ℝ* = (ℝ ∪ {+∞, -∞}) | |
| 2 | 1 | eleq2i 2296 | . 2 ⊢ (𝐴 ∈ ℝ* ↔ 𝐴 ∈ (ℝ ∪ {+∞, -∞})) |
| 3 | elun 3345 | . 2 ⊢ (𝐴 ∈ (ℝ ∪ {+∞, -∞}) ↔ (𝐴 ∈ ℝ ∨ 𝐴 ∈ {+∞, -∞})) | |
| 4 | pnfex 8208 | . . . . 5 ⊢ +∞ ∈ V | |
| 5 | mnfxr 8211 | . . . . . 6 ⊢ -∞ ∈ ℝ* | |
| 6 | 5 | elexi 2812 | . . . . 5 ⊢ -∞ ∈ V |
| 7 | 4, 6 | elpr2 3688 | . . . 4 ⊢ (𝐴 ∈ {+∞, -∞} ↔ (𝐴 = +∞ ∨ 𝐴 = -∞)) |
| 8 | 7 | orbi2i 767 | . . 3 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 ∈ {+∞, -∞}) ↔ (𝐴 ∈ ℝ ∨ (𝐴 = +∞ ∨ 𝐴 = -∞))) |
| 9 | 3orass 1005 | . . 3 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ↔ (𝐴 ∈ ℝ ∨ (𝐴 = +∞ ∨ 𝐴 = -∞))) | |
| 10 | 8, 9 | bitr4i 187 | . 2 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 ∈ {+∞, -∞}) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) |
| 11 | 2, 3, 10 | 3bitri 206 | 1 ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∨ wo 713 ∨ w3o 1001 = wceq 1395 ∈ wcel 2200 ∪ cun 3195 {cpr 3667 ℝcr 8006 +∞cpnf 8186 -∞cmnf 8187 ℝ*cxr 8188 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-un 4524 ax-cnex 8098 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3889 df-pnf 8191 df-mnf 8192 df-xr 8193 |
| This theorem is referenced by: xrnemnf 9981 xrnepnf 9982 xrltnr 9983 xrltnsym 9997 xrlttr 9999 xrltso 10000 xrlttri3 10001 nltpnft 10018 npnflt 10019 ngtmnft 10021 nmnfgt 10022 xrrebnd 10023 xnegcl 10036 xnegneg 10037 xltnegi 10039 xrpnfdc 10046 xrmnfdc 10047 xnegid 10063 xaddcom 10065 xaddid1 10066 xnegdi 10072 xleadd1a 10077 xltadd1 10080 xlt2add 10084 xsubge0 10085 xposdif 10086 xleaddadd 10091 qbtwnxr 10485 xrmaxiflemcl 11764 xrmaxifle 11765 xrmaxiflemab 11766 xrmaxiflemlub 11767 xrmaxltsup 11777 xrmaxadd 11780 xrbdtri 11795 isxmet2d 15030 blssioo 15235 |
| Copyright terms: Public domain | W3C validator |