![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elxr | GIF version |
Description: Membership in the set of extended reals. (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
elxr | ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xr 7998 | . . 3 ⊢ ℝ* = (ℝ ∪ {+∞, -∞}) | |
2 | 1 | eleq2i 2244 | . 2 ⊢ (𝐴 ∈ ℝ* ↔ 𝐴 ∈ (ℝ ∪ {+∞, -∞})) |
3 | elun 3278 | . 2 ⊢ (𝐴 ∈ (ℝ ∪ {+∞, -∞}) ↔ (𝐴 ∈ ℝ ∨ 𝐴 ∈ {+∞, -∞})) | |
4 | pnfex 8013 | . . . . 5 ⊢ +∞ ∈ V | |
5 | mnfxr 8016 | . . . . . 6 ⊢ -∞ ∈ ℝ* | |
6 | 5 | elexi 2751 | . . . . 5 ⊢ -∞ ∈ V |
7 | 4, 6 | elpr2 3616 | . . . 4 ⊢ (𝐴 ∈ {+∞, -∞} ↔ (𝐴 = +∞ ∨ 𝐴 = -∞)) |
8 | 7 | orbi2i 762 | . . 3 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 ∈ {+∞, -∞}) ↔ (𝐴 ∈ ℝ ∨ (𝐴 = +∞ ∨ 𝐴 = -∞))) |
9 | 3orass 981 | . . 3 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ↔ (𝐴 ∈ ℝ ∨ (𝐴 = +∞ ∨ 𝐴 = -∞))) | |
10 | 8, 9 | bitr4i 187 | . 2 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 ∈ {+∞, -∞}) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) |
11 | 2, 3, 10 | 3bitri 206 | 1 ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∨ wo 708 ∨ w3o 977 = wceq 1353 ∈ wcel 2148 ∪ cun 3129 {cpr 3595 ℝcr 7812 +∞cpnf 7991 -∞cmnf 7992 ℝ*cxr 7993 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-un 4435 ax-cnex 7904 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-rex 2461 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-uni 3812 df-pnf 7996 df-mnf 7997 df-xr 7998 |
This theorem is referenced by: xrnemnf 9779 xrnepnf 9780 xrltnr 9781 xrltnsym 9795 xrlttr 9797 xrltso 9798 xrlttri3 9799 nltpnft 9816 npnflt 9817 ngtmnft 9819 nmnfgt 9820 xrrebnd 9821 xnegcl 9834 xnegneg 9835 xltnegi 9837 xrpnfdc 9844 xrmnfdc 9845 xnegid 9861 xaddcom 9863 xaddid1 9864 xnegdi 9870 xleadd1a 9875 xltadd1 9878 xlt2add 9882 xsubge0 9883 xposdif 9884 xleaddadd 9889 qbtwnxr 10260 xrmaxiflemcl 11255 xrmaxifle 11256 xrmaxiflemab 11257 xrmaxiflemlub 11258 xrmaxltsup 11268 xrmaxadd 11271 xrbdtri 11286 isxmet2d 13933 blssioo 14130 |
Copyright terms: Public domain | W3C validator |