| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elxr | GIF version | ||
| Description: Membership in the set of extended reals. (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| elxr | ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xr 8153 | . . 3 ⊢ ℝ* = (ℝ ∪ {+∞, -∞}) | |
| 2 | 1 | eleq2i 2276 | . 2 ⊢ (𝐴 ∈ ℝ* ↔ 𝐴 ∈ (ℝ ∪ {+∞, -∞})) |
| 3 | elun 3325 | . 2 ⊢ (𝐴 ∈ (ℝ ∪ {+∞, -∞}) ↔ (𝐴 ∈ ℝ ∨ 𝐴 ∈ {+∞, -∞})) | |
| 4 | pnfex 8168 | . . . . 5 ⊢ +∞ ∈ V | |
| 5 | mnfxr 8171 | . . . . . 6 ⊢ -∞ ∈ ℝ* | |
| 6 | 5 | elexi 2792 | . . . . 5 ⊢ -∞ ∈ V |
| 7 | 4, 6 | elpr2 3668 | . . . 4 ⊢ (𝐴 ∈ {+∞, -∞} ↔ (𝐴 = +∞ ∨ 𝐴 = -∞)) |
| 8 | 7 | orbi2i 766 | . . 3 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 ∈ {+∞, -∞}) ↔ (𝐴 ∈ ℝ ∨ (𝐴 = +∞ ∨ 𝐴 = -∞))) |
| 9 | 3orass 986 | . . 3 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ↔ (𝐴 ∈ ℝ ∨ (𝐴 = +∞ ∨ 𝐴 = -∞))) | |
| 10 | 8, 9 | bitr4i 187 | . 2 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 ∈ {+∞, -∞}) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) |
| 11 | 2, 3, 10 | 3bitri 206 | 1 ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∨ wo 712 ∨ w3o 982 = wceq 1375 ∈ wcel 2180 ∪ cun 3175 {cpr 3647 ℝcr 7966 +∞cpnf 8146 -∞cmnf 8147 ℝ*cxr 8148 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-un 4501 ax-cnex 8058 |
| This theorem depends on definitions: df-bi 117 df-3or 984 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-rex 2494 df-v 2781 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-uni 3868 df-pnf 8151 df-mnf 8152 df-xr 8153 |
| This theorem is referenced by: xrnemnf 9941 xrnepnf 9942 xrltnr 9943 xrltnsym 9957 xrlttr 9959 xrltso 9960 xrlttri3 9961 nltpnft 9978 npnflt 9979 ngtmnft 9981 nmnfgt 9982 xrrebnd 9983 xnegcl 9996 xnegneg 9997 xltnegi 9999 xrpnfdc 10006 xrmnfdc 10007 xnegid 10023 xaddcom 10025 xaddid1 10026 xnegdi 10032 xleadd1a 10037 xltadd1 10040 xlt2add 10044 xsubge0 10045 xposdif 10046 xleaddadd 10051 qbtwnxr 10444 xrmaxiflemcl 11722 xrmaxifle 11723 xrmaxiflemab 11724 xrmaxiflemlub 11725 xrmaxltsup 11735 xrmaxadd 11738 xrbdtri 11753 isxmet2d 14987 blssioo 15192 |
| Copyright terms: Public domain | W3C validator |