| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elxr | GIF version | ||
| Description: Membership in the set of extended reals. (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| elxr | ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xr 8084 | . . 3 ⊢ ℝ* = (ℝ ∪ {+∞, -∞}) | |
| 2 | 1 | eleq2i 2263 | . 2 ⊢ (𝐴 ∈ ℝ* ↔ 𝐴 ∈ (ℝ ∪ {+∞, -∞})) |
| 3 | elun 3305 | . 2 ⊢ (𝐴 ∈ (ℝ ∪ {+∞, -∞}) ↔ (𝐴 ∈ ℝ ∨ 𝐴 ∈ {+∞, -∞})) | |
| 4 | pnfex 8099 | . . . . 5 ⊢ +∞ ∈ V | |
| 5 | mnfxr 8102 | . . . . . 6 ⊢ -∞ ∈ ℝ* | |
| 6 | 5 | elexi 2775 | . . . . 5 ⊢ -∞ ∈ V |
| 7 | 4, 6 | elpr2 3645 | . . . 4 ⊢ (𝐴 ∈ {+∞, -∞} ↔ (𝐴 = +∞ ∨ 𝐴 = -∞)) |
| 8 | 7 | orbi2i 763 | . . 3 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 ∈ {+∞, -∞}) ↔ (𝐴 ∈ ℝ ∨ (𝐴 = +∞ ∨ 𝐴 = -∞))) |
| 9 | 3orass 983 | . . 3 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ↔ (𝐴 ∈ ℝ ∨ (𝐴 = +∞ ∨ 𝐴 = -∞))) | |
| 10 | 8, 9 | bitr4i 187 | . 2 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 ∈ {+∞, -∞}) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) |
| 11 | 2, 3, 10 | 3bitri 206 | 1 ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∨ wo 709 ∨ w3o 979 = wceq 1364 ∈ wcel 2167 ∪ cun 3155 {cpr 3624 ℝcr 7897 +∞cpnf 8077 -∞cmnf 8078 ℝ*cxr 8079 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-un 4469 ax-cnex 7989 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-uni 3841 df-pnf 8082 df-mnf 8083 df-xr 8084 |
| This theorem is referenced by: xrnemnf 9871 xrnepnf 9872 xrltnr 9873 xrltnsym 9887 xrlttr 9889 xrltso 9890 xrlttri3 9891 nltpnft 9908 npnflt 9909 ngtmnft 9911 nmnfgt 9912 xrrebnd 9913 xnegcl 9926 xnegneg 9927 xltnegi 9929 xrpnfdc 9936 xrmnfdc 9937 xnegid 9953 xaddcom 9955 xaddid1 9956 xnegdi 9962 xleadd1a 9967 xltadd1 9970 xlt2add 9974 xsubge0 9975 xposdif 9976 xleaddadd 9981 qbtwnxr 10366 xrmaxiflemcl 11429 xrmaxifle 11430 xrmaxiflemab 11431 xrmaxiflemlub 11432 xrmaxltsup 11442 xrmaxadd 11445 xrbdtri 11460 isxmet2d 14692 blssioo 14897 |
| Copyright terms: Public domain | W3C validator |