| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > elxr | GIF version | ||
| Description: Membership in the set of extended reals. (Contributed by NM, 14-Oct-2005.) | 
| Ref | Expression | 
|---|---|
| elxr | ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-xr 8065 | . . 3 ⊢ ℝ* = (ℝ ∪ {+∞, -∞}) | |
| 2 | 1 | eleq2i 2263 | . 2 ⊢ (𝐴 ∈ ℝ* ↔ 𝐴 ∈ (ℝ ∪ {+∞, -∞})) | 
| 3 | elun 3304 | . 2 ⊢ (𝐴 ∈ (ℝ ∪ {+∞, -∞}) ↔ (𝐴 ∈ ℝ ∨ 𝐴 ∈ {+∞, -∞})) | |
| 4 | pnfex 8080 | . . . . 5 ⊢ +∞ ∈ V | |
| 5 | mnfxr 8083 | . . . . . 6 ⊢ -∞ ∈ ℝ* | |
| 6 | 5 | elexi 2775 | . . . . 5 ⊢ -∞ ∈ V | 
| 7 | 4, 6 | elpr2 3644 | . . . 4 ⊢ (𝐴 ∈ {+∞, -∞} ↔ (𝐴 = +∞ ∨ 𝐴 = -∞)) | 
| 8 | 7 | orbi2i 763 | . . 3 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 ∈ {+∞, -∞}) ↔ (𝐴 ∈ ℝ ∨ (𝐴 = +∞ ∨ 𝐴 = -∞))) | 
| 9 | 3orass 983 | . . 3 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ↔ (𝐴 ∈ ℝ ∨ (𝐴 = +∞ ∨ 𝐴 = -∞))) | |
| 10 | 8, 9 | bitr4i 187 | . 2 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 ∈ {+∞, -∞}) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) | 
| 11 | 2, 3, 10 | 3bitri 206 | 1 ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) | 
| Colors of variables: wff set class | 
| Syntax hints: ↔ wb 105 ∨ wo 709 ∨ w3o 979 = wceq 1364 ∈ wcel 2167 ∪ cun 3155 {cpr 3623 ℝcr 7878 +∞cpnf 8058 -∞cmnf 8059 ℝ*cxr 8060 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-un 4468 ax-cnex 7970 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-uni 3840 df-pnf 8063 df-mnf 8064 df-xr 8065 | 
| This theorem is referenced by: xrnemnf 9852 xrnepnf 9853 xrltnr 9854 xrltnsym 9868 xrlttr 9870 xrltso 9871 xrlttri3 9872 nltpnft 9889 npnflt 9890 ngtmnft 9892 nmnfgt 9893 xrrebnd 9894 xnegcl 9907 xnegneg 9908 xltnegi 9910 xrpnfdc 9917 xrmnfdc 9918 xnegid 9934 xaddcom 9936 xaddid1 9937 xnegdi 9943 xleadd1a 9948 xltadd1 9951 xlt2add 9955 xsubge0 9956 xposdif 9957 xleaddadd 9962 qbtwnxr 10347 xrmaxiflemcl 11410 xrmaxifle 11411 xrmaxiflemab 11412 xrmaxiflemlub 11413 xrmaxltsup 11423 xrmaxadd 11426 xrbdtri 11441 isxmet2d 14584 blssioo 14789 | 
| Copyright terms: Public domain | W3C validator |