| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elxr | GIF version | ||
| Description: Membership in the set of extended reals. (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| elxr | ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xr 8118 | . . 3 ⊢ ℝ* = (ℝ ∪ {+∞, -∞}) | |
| 2 | 1 | eleq2i 2273 | . 2 ⊢ (𝐴 ∈ ℝ* ↔ 𝐴 ∈ (ℝ ∪ {+∞, -∞})) |
| 3 | elun 3315 | . 2 ⊢ (𝐴 ∈ (ℝ ∪ {+∞, -∞}) ↔ (𝐴 ∈ ℝ ∨ 𝐴 ∈ {+∞, -∞})) | |
| 4 | pnfex 8133 | . . . . 5 ⊢ +∞ ∈ V | |
| 5 | mnfxr 8136 | . . . . . 6 ⊢ -∞ ∈ ℝ* | |
| 6 | 5 | elexi 2785 | . . . . 5 ⊢ -∞ ∈ V |
| 7 | 4, 6 | elpr2 3656 | . . . 4 ⊢ (𝐴 ∈ {+∞, -∞} ↔ (𝐴 = +∞ ∨ 𝐴 = -∞)) |
| 8 | 7 | orbi2i 764 | . . 3 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 ∈ {+∞, -∞}) ↔ (𝐴 ∈ ℝ ∨ (𝐴 = +∞ ∨ 𝐴 = -∞))) |
| 9 | 3orass 984 | . . 3 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ↔ (𝐴 ∈ ℝ ∨ (𝐴 = +∞ ∨ 𝐴 = -∞))) | |
| 10 | 8, 9 | bitr4i 187 | . 2 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 ∈ {+∞, -∞}) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) |
| 11 | 2, 3, 10 | 3bitri 206 | 1 ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∨ wo 710 ∨ w3o 980 = wceq 1373 ∈ wcel 2177 ∪ cun 3165 {cpr 3635 ℝcr 7931 +∞cpnf 8111 -∞cmnf 8112 ℝ*cxr 8113 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-un 4484 ax-cnex 8023 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rex 2491 df-v 2775 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-uni 3853 df-pnf 8116 df-mnf 8117 df-xr 8118 |
| This theorem is referenced by: xrnemnf 9906 xrnepnf 9907 xrltnr 9908 xrltnsym 9922 xrlttr 9924 xrltso 9925 xrlttri3 9926 nltpnft 9943 npnflt 9944 ngtmnft 9946 nmnfgt 9947 xrrebnd 9948 xnegcl 9961 xnegneg 9962 xltnegi 9964 xrpnfdc 9971 xrmnfdc 9972 xnegid 9988 xaddcom 9990 xaddid1 9991 xnegdi 9997 xleadd1a 10002 xltadd1 10005 xlt2add 10009 xsubge0 10010 xposdif 10011 xleaddadd 10016 qbtwnxr 10407 xrmaxiflemcl 11600 xrmaxifle 11601 xrmaxiflemab 11602 xrmaxiflemlub 11603 xrmaxltsup 11613 xrmaxadd 11616 xrbdtri 11631 isxmet2d 14864 blssioo 15069 |
| Copyright terms: Public domain | W3C validator |