ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elxr GIF version

Theorem elxr 9142
Description: Membership in the set of extended reals. (Contributed by NM, 14-Oct-2005.)
Assertion
Ref Expression
elxr (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))

Proof of Theorem elxr
StepHypRef Expression
1 df-xr 7429 . . 3 * = (ℝ ∪ {+∞, -∞})
21eleq2i 2149 . 2 (𝐴 ∈ ℝ*𝐴 ∈ (ℝ ∪ {+∞, -∞}))
3 elun 3125 . 2 (𝐴 ∈ (ℝ ∪ {+∞, -∞}) ↔ (𝐴 ∈ ℝ ∨ 𝐴 ∈ {+∞, -∞}))
4 pnfex 7444 . . . . 5 +∞ ∈ V
5 mnfxr 7447 . . . . . 6 -∞ ∈ ℝ*
65elexi 2622 . . . . 5 -∞ ∈ V
74, 6elpr2 3444 . . . 4 (𝐴 ∈ {+∞, -∞} ↔ (𝐴 = +∞ ∨ 𝐴 = -∞))
87orbi2i 712 . . 3 ((𝐴 ∈ ℝ ∨ 𝐴 ∈ {+∞, -∞}) ↔ (𝐴 ∈ ℝ ∨ (𝐴 = +∞ ∨ 𝐴 = -∞)))
9 3orass 923 . . 3 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ↔ (𝐴 ∈ ℝ ∨ (𝐴 = +∞ ∨ 𝐴 = -∞)))
108, 9bitr4i 185 . 2 ((𝐴 ∈ ℝ ∨ 𝐴 ∈ {+∞, -∞}) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
112, 3, 103bitri 204 1 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
Colors of variables: wff set class
Syntax hints:  wb 103  wo 662  w3o 919   = wceq 1285  wcel 1434  cun 2982  {cpr 3423  cr 7252  +∞cpnf 7422  -∞cmnf 7423  *cxr 7424
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3922  ax-pow 3974  ax-un 4224  ax-cnex 7339
This theorem depends on definitions:  df-bi 115  df-3or 921  df-tru 1288  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-rex 2359  df-v 2614  df-un 2988  df-in 2990  df-ss 2997  df-pw 3408  df-sn 3428  df-pr 3429  df-uni 3628  df-pnf 7427  df-mnf 7428  df-xr 7429
This theorem is referenced by:  xrnemnf  9143  xrnepnf  9144  xrltnr  9145  xrltnsym  9158  xrlttr  9160  xrltso  9161  xrlttri3  9162  nltpnft  9174  ngtmnft  9175  xrrebnd  9176  xnegcl  9189  xnegneg  9190  xltnegi  9192  qbtwnxr  9558
  Copyright terms: Public domain W3C validator