![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elxr | GIF version |
Description: Membership in the set of extended reals. (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
elxr | ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xr 7623 | . . 3 ⊢ ℝ* = (ℝ ∪ {+∞, -∞}) | |
2 | 1 | eleq2i 2161 | . 2 ⊢ (𝐴 ∈ ℝ* ↔ 𝐴 ∈ (ℝ ∪ {+∞, -∞})) |
3 | elun 3156 | . 2 ⊢ (𝐴 ∈ (ℝ ∪ {+∞, -∞}) ↔ (𝐴 ∈ ℝ ∨ 𝐴 ∈ {+∞, -∞})) | |
4 | pnfex 7638 | . . . . 5 ⊢ +∞ ∈ V | |
5 | mnfxr 7641 | . . . . . 6 ⊢ -∞ ∈ ℝ* | |
6 | 5 | elexi 2645 | . . . . 5 ⊢ -∞ ∈ V |
7 | 4, 6 | elpr2 3488 | . . . 4 ⊢ (𝐴 ∈ {+∞, -∞} ↔ (𝐴 = +∞ ∨ 𝐴 = -∞)) |
8 | 7 | orbi2i 717 | . . 3 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 ∈ {+∞, -∞}) ↔ (𝐴 ∈ ℝ ∨ (𝐴 = +∞ ∨ 𝐴 = -∞))) |
9 | 3orass 930 | . . 3 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ↔ (𝐴 ∈ ℝ ∨ (𝐴 = +∞ ∨ 𝐴 = -∞))) | |
10 | 8, 9 | bitr4i 186 | . 2 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 ∈ {+∞, -∞}) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) |
11 | 2, 3, 10 | 3bitri 205 | 1 ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∨ wo 667 ∨ w3o 926 = wceq 1296 ∈ wcel 1445 ∪ cun 3011 {cpr 3467 ℝcr 7446 +∞cpnf 7616 -∞cmnf 7617 ℝ*cxr 7618 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-13 1456 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-sep 3978 ax-pow 4030 ax-un 4284 ax-cnex 7533 |
This theorem depends on definitions: df-bi 116 df-3or 928 df-tru 1299 df-nf 1402 df-sb 1700 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-rex 2376 df-v 2635 df-un 3017 df-in 3019 df-ss 3026 df-pw 3451 df-sn 3472 df-pr 3473 df-uni 3676 df-pnf 7621 df-mnf 7622 df-xr 7623 |
This theorem is referenced by: xrnemnf 9347 xrnepnf 9348 xrltnr 9349 xrltnsym 9362 xrlttr 9364 xrltso 9365 xrlttri3 9366 nltpnft 9380 npnflt 9381 ngtmnft 9383 nmnfgt 9384 xrrebnd 9385 xnegcl 9398 xnegneg 9399 xltnegi 9401 xrpnfdc 9408 xrmnfdc 9409 xnegid 9425 xaddcom 9427 xaddid1 9428 xnegdi 9434 xleadd1a 9439 xltadd1 9442 xlt2add 9446 xsubge0 9447 xposdif 9448 xleaddadd 9453 qbtwnxr 9818 xrmaxiflemcl 10788 xrmaxifle 10789 xrmaxiflemab 10790 xrmaxiflemlub 10791 xrmaxltsup 10801 xrmaxadd 10804 xrbdtri 10819 isxmet2d 12134 blssioo 12319 |
Copyright terms: Public domain | W3C validator |