ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulge0 GIF version

Theorem mulge0 8538
Description: The product of two nonnegative numbers is nonnegative. (Contributed by NM, 8-Oct-1999.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
mulge0 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 · 𝐵))

Proof of Theorem mulge0
StepHypRef Expression
1 remulcl 7902 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
21ad2ant2r 506 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 · 𝐵) ∈ ℝ)
3 0re 7920 . . . 4 0 ∈ ℝ
4 ltnsym2 8010 . . . 4 (((𝐴 · 𝐵) ∈ ℝ ∧ 0 ∈ ℝ) → ¬ ((𝐴 · 𝐵) < 0 ∧ 0 < (𝐴 · 𝐵)))
52, 3, 4sylancl 411 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ¬ ((𝐴 · 𝐵) < 0 ∧ 0 < (𝐴 · 𝐵)))
6 orc 707 . . . . . 6 ((𝐴 · 𝐵) < 0 → ((𝐴 · 𝐵) < 0 ∨ 0 < (𝐴 · 𝐵)))
7 reaplt 8507 . . . . . . 7 (((𝐴 · 𝐵) ∈ ℝ ∧ 0 ∈ ℝ) → ((𝐴 · 𝐵) # 0 ↔ ((𝐴 · 𝐵) < 0 ∨ 0 < (𝐴 · 𝐵))))
82, 3, 7sylancl 411 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 · 𝐵) # 0 ↔ ((𝐴 · 𝐵) < 0 ∨ 0 < (𝐴 · 𝐵))))
96, 8syl5ibr 155 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 · 𝐵) < 0 → (𝐴 · 𝐵) # 0))
10 simplll 528 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 · 𝐵) # 0) → 𝐴 ∈ ℝ)
11 simplrl 530 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 · 𝐵) # 0) → 𝐵 ∈ ℝ)
12 recn 7907 . . . . . . . . . . . . . 14 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
13 recn 7907 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
14 mulap0r 8534 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 · 𝐵) # 0) → (𝐴 # 0 ∧ 𝐵 # 0))
1513, 14syl3an1 1266 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ ∧ (𝐴 · 𝐵) # 0) → (𝐴 # 0 ∧ 𝐵 # 0))
1612, 15syl3an2 1267 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 · 𝐵) # 0) → (𝐴 # 0 ∧ 𝐵 # 0))
17163expia 1200 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 𝐵) # 0 → (𝐴 # 0 ∧ 𝐵 # 0)))
1817ad2ant2r 506 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 · 𝐵) # 0 → (𝐴 # 0 ∧ 𝐵 # 0)))
1918imp 123 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 · 𝐵) # 0) → (𝐴 # 0 ∧ 𝐵 # 0))
2019simpld 111 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 · 𝐵) # 0) → 𝐴 # 0)
21 reaplt 8507 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 # 0 ↔ (𝐴 < 0 ∨ 0 < 𝐴)))
223, 21mpan2 423 . . . . . . . . . 10 (𝐴 ∈ ℝ → (𝐴 # 0 ↔ (𝐴 < 0 ∨ 0 < 𝐴)))
2322ad3antrrr 489 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 · 𝐵) # 0) → (𝐴 # 0 ↔ (𝐴 < 0 ∨ 0 < 𝐴)))
2420, 23mpbid 146 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 · 𝐵) # 0) → (𝐴 < 0 ∨ 0 < 𝐴))
25 lenlt 7995 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐴 ↔ ¬ 𝐴 < 0))
263, 25mpan 422 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (0 ≤ 𝐴 ↔ ¬ 𝐴 < 0))
2726biimpa 294 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ¬ 𝐴 < 0)
2827ad2antrr 485 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 · 𝐵) # 0) → ¬ 𝐴 < 0)
29 biorf 739 . . . . . . . . 9 𝐴 < 0 → (0 < 𝐴 ↔ (𝐴 < 0 ∨ 0 < 𝐴)))
3028, 29syl 14 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 · 𝐵) # 0) → (0 < 𝐴 ↔ (𝐴 < 0 ∨ 0 < 𝐴)))
3124, 30mpbird 166 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 · 𝐵) # 0) → 0 < 𝐴)
3219simprd 113 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 · 𝐵) # 0) → 𝐵 # 0)
33 reaplt 8507 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐵 # 0 ↔ (𝐵 < 0 ∨ 0 < 𝐵)))
343, 33mpan2 423 . . . . . . . . . . 11 (𝐵 ∈ ℝ → (𝐵 # 0 ↔ (𝐵 < 0 ∨ 0 < 𝐵)))
3534ad2antrl 487 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐵 # 0 ↔ (𝐵 < 0 ∨ 0 < 𝐵)))
3635adantr 274 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 · 𝐵) # 0) → (𝐵 # 0 ↔ (𝐵 < 0 ∨ 0 < 𝐵)))
3732, 36mpbid 146 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 · 𝐵) # 0) → (𝐵 < 0 ∨ 0 < 𝐵))
38 lenlt 7995 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ 𝐵 ↔ ¬ 𝐵 < 0))
393, 38mpan 422 . . . . . . . . . . 11 (𝐵 ∈ ℝ → (0 ≤ 𝐵 ↔ ¬ 𝐵 < 0))
4039biimpa 294 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → ¬ 𝐵 < 0)
4140ad2antlr 486 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 · 𝐵) # 0) → ¬ 𝐵 < 0)
42 biorf 739 . . . . . . . . 9 𝐵 < 0 → (0 < 𝐵 ↔ (𝐵 < 0 ∨ 0 < 𝐵)))
4341, 42syl 14 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 · 𝐵) # 0) → (0 < 𝐵 ↔ (𝐵 < 0 ∨ 0 < 𝐵)))
4437, 43mpbird 166 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 · 𝐵) # 0) → 0 < 𝐵)
4510, 11, 31, 44mulgt0d 8042 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 · 𝐵) # 0) → 0 < (𝐴 · 𝐵))
4645ex 114 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 · 𝐵) # 0 → 0 < (𝐴 · 𝐵)))
479, 46syld 45 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 · 𝐵) < 0 → 0 < (𝐴 · 𝐵)))
4847ancld 323 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 · 𝐵) < 0 → ((𝐴 · 𝐵) < 0 ∧ 0 < (𝐴 · 𝐵))))
495, 48mtod 658 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ¬ (𝐴 · 𝐵) < 0)
50 lenlt 7995 . . 3 ((0 ∈ ℝ ∧ (𝐴 · 𝐵) ∈ ℝ) → (0 ≤ (𝐴 · 𝐵) ↔ ¬ (𝐴 · 𝐵) < 0))
513, 2, 50sylancr 412 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (0 ≤ (𝐴 · 𝐵) ↔ ¬ (𝐴 · 𝐵) < 0))
5249, 51mpbird 166 1 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 · 𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 703  wcel 2141   class class class wbr 3989  (class class class)co 5853  cc 7772  cr 7773  0cc0 7774   · cmul 7779   < clt 7954  cle 7955   # cap 8500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-po 4281  df-iso 4282  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501
This theorem is referenced by:  mulge0i  8539  mulge0d  8540  ge0mulcl  9939  expge0  10512  bernneq  10596  sqrtmul  10999  amgm2  11082
  Copyright terms: Public domain W3C validator