ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulge0 GIF version

Theorem mulge0 8607
Description: The product of two nonnegative numbers is nonnegative. (Contributed by NM, 8-Oct-1999.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
mulge0 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 · 𝐵))

Proof of Theorem mulge0
StepHypRef Expression
1 remulcl 7970 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
21ad2ant2r 509 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 · 𝐵) ∈ ℝ)
3 0re 7988 . . . 4 0 ∈ ℝ
4 ltnsym2 8079 . . . 4 (((𝐴 · 𝐵) ∈ ℝ ∧ 0 ∈ ℝ) → ¬ ((𝐴 · 𝐵) < 0 ∧ 0 < (𝐴 · 𝐵)))
52, 3, 4sylancl 413 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ¬ ((𝐴 · 𝐵) < 0 ∧ 0 < (𝐴 · 𝐵)))
6 orc 713 . . . . . 6 ((𝐴 · 𝐵) < 0 → ((𝐴 · 𝐵) < 0 ∨ 0 < (𝐴 · 𝐵)))
7 reaplt 8576 . . . . . . 7 (((𝐴 · 𝐵) ∈ ℝ ∧ 0 ∈ ℝ) → ((𝐴 · 𝐵) # 0 ↔ ((𝐴 · 𝐵) < 0 ∨ 0 < (𝐴 · 𝐵))))
82, 3, 7sylancl 413 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 · 𝐵) # 0 ↔ ((𝐴 · 𝐵) < 0 ∨ 0 < (𝐴 · 𝐵))))
96, 8imbitrrid 156 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 · 𝐵) < 0 → (𝐴 · 𝐵) # 0))
10 simplll 533 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 · 𝐵) # 0) → 𝐴 ∈ ℝ)
11 simplrl 535 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 · 𝐵) # 0) → 𝐵 ∈ ℝ)
12 recn 7975 . . . . . . . . . . . . . 14 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
13 recn 7975 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
14 mulap0r 8603 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 · 𝐵) # 0) → (𝐴 # 0 ∧ 𝐵 # 0))
1513, 14syl3an1 1282 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ ∧ (𝐴 · 𝐵) # 0) → (𝐴 # 0 ∧ 𝐵 # 0))
1612, 15syl3an2 1283 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 · 𝐵) # 0) → (𝐴 # 0 ∧ 𝐵 # 0))
17163expia 1207 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 𝐵) # 0 → (𝐴 # 0 ∧ 𝐵 # 0)))
1817ad2ant2r 509 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 · 𝐵) # 0 → (𝐴 # 0 ∧ 𝐵 # 0)))
1918imp 124 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 · 𝐵) # 0) → (𝐴 # 0 ∧ 𝐵 # 0))
2019simpld 112 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 · 𝐵) # 0) → 𝐴 # 0)
21 reaplt 8576 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 # 0 ↔ (𝐴 < 0 ∨ 0 < 𝐴)))
223, 21mpan2 425 . . . . . . . . . 10 (𝐴 ∈ ℝ → (𝐴 # 0 ↔ (𝐴 < 0 ∨ 0 < 𝐴)))
2322ad3antrrr 492 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 · 𝐵) # 0) → (𝐴 # 0 ↔ (𝐴 < 0 ∨ 0 < 𝐴)))
2420, 23mpbid 147 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 · 𝐵) # 0) → (𝐴 < 0 ∨ 0 < 𝐴))
25 lenlt 8064 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐴 ↔ ¬ 𝐴 < 0))
263, 25mpan 424 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (0 ≤ 𝐴 ↔ ¬ 𝐴 < 0))
2726biimpa 296 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ¬ 𝐴 < 0)
2827ad2antrr 488 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 · 𝐵) # 0) → ¬ 𝐴 < 0)
29 biorf 745 . . . . . . . . 9 𝐴 < 0 → (0 < 𝐴 ↔ (𝐴 < 0 ∨ 0 < 𝐴)))
3028, 29syl 14 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 · 𝐵) # 0) → (0 < 𝐴 ↔ (𝐴 < 0 ∨ 0 < 𝐴)))
3124, 30mpbird 167 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 · 𝐵) # 0) → 0 < 𝐴)
3219simprd 114 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 · 𝐵) # 0) → 𝐵 # 0)
33 reaplt 8576 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐵 # 0 ↔ (𝐵 < 0 ∨ 0 < 𝐵)))
343, 33mpan2 425 . . . . . . . . . . 11 (𝐵 ∈ ℝ → (𝐵 # 0 ↔ (𝐵 < 0 ∨ 0 < 𝐵)))
3534ad2antrl 490 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐵 # 0 ↔ (𝐵 < 0 ∨ 0 < 𝐵)))
3635adantr 276 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 · 𝐵) # 0) → (𝐵 # 0 ↔ (𝐵 < 0 ∨ 0 < 𝐵)))
3732, 36mpbid 147 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 · 𝐵) # 0) → (𝐵 < 0 ∨ 0 < 𝐵))
38 lenlt 8064 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ 𝐵 ↔ ¬ 𝐵 < 0))
393, 38mpan 424 . . . . . . . . . . 11 (𝐵 ∈ ℝ → (0 ≤ 𝐵 ↔ ¬ 𝐵 < 0))
4039biimpa 296 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → ¬ 𝐵 < 0)
4140ad2antlr 489 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 · 𝐵) # 0) → ¬ 𝐵 < 0)
42 biorf 745 . . . . . . . . 9 𝐵 < 0 → (0 < 𝐵 ↔ (𝐵 < 0 ∨ 0 < 𝐵)))
4341, 42syl 14 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 · 𝐵) # 0) → (0 < 𝐵 ↔ (𝐵 < 0 ∨ 0 < 𝐵)))
4437, 43mpbird 167 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 · 𝐵) # 0) → 0 < 𝐵)
4510, 11, 31, 44mulgt0d 8111 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 · 𝐵) # 0) → 0 < (𝐴 · 𝐵))
4645ex 115 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 · 𝐵) # 0 → 0 < (𝐴 · 𝐵)))
479, 46syld 45 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 · 𝐵) < 0 → 0 < (𝐴 · 𝐵)))
4847ancld 325 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 · 𝐵) < 0 → ((𝐴 · 𝐵) < 0 ∧ 0 < (𝐴 · 𝐵))))
495, 48mtod 664 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ¬ (𝐴 · 𝐵) < 0)
50 lenlt 8064 . . 3 ((0 ∈ ℝ ∧ (𝐴 · 𝐵) ∈ ℝ) → (0 ≤ (𝐴 · 𝐵) ↔ ¬ (𝐴 · 𝐵) < 0))
513, 2, 50sylancr 414 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (0 ≤ (𝐴 · 𝐵) ↔ ¬ (𝐴 · 𝐵) < 0))
5249, 51mpbird 167 1 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 · 𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  wcel 2160   class class class wbr 4018  (class class class)co 5897  cc 7840  cr 7841  0cc0 7842   · cmul 7847   < clt 8023  cle 8024   # cap 8569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-mulrcl 7941  ax-addcom 7942  ax-mulcom 7943  ax-addass 7944  ax-mulass 7945  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-1rid 7949  ax-0id 7950  ax-rnegex 7951  ax-precex 7952  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-apti 7957  ax-pre-ltadd 7958  ax-pre-mulgt0 7959  ax-pre-mulext 7960
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-id 4311  df-po 4314  df-iso 4315  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-iota 5196  df-fun 5237  df-fv 5243  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-reap 8563  df-ap 8570
This theorem is referenced by:  mulge0i  8608  mulge0d  8609  ge0mulcl  10014  expge0  10590  bernneq  10675  sqrtmul  11079  amgm2  11162
  Copyright terms: Public domain W3C validator