ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2sqlem10 GIF version

Theorem 2sqlem10 13561
Description: Lemma for 2sq . Every factor of a "proper" sum of two squares (where the summands are coprime) is a sum of two squares. (Contributed by Mario Carneiro, 19-Jun-2015.)
Hypotheses
Ref Expression
2sq.1 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
2sqlem7.2 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))}
Assertion
Ref Expression
2sqlem10 ((𝐴𝑌𝐵 ∈ ℕ ∧ 𝐵𝐴) → 𝐵𝑆)
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦   𝑥,𝑆,𝑦,𝑧   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐴(𝑤)   𝐵(𝑧,𝑤)   𝑆(𝑤)   𝑌(𝑧,𝑤)

Proof of Theorem 2sqlem10
Dummy variables 𝑎 𝑏 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 3984 . . . . . 6 (𝑏 = 𝐵 → (𝑏𝑎𝐵𝑎))
2 eleq1 2228 . . . . . 6 (𝑏 = 𝐵 → (𝑏𝑆𝐵𝑆))
31, 2imbi12d 233 . . . . 5 (𝑏 = 𝐵 → ((𝑏𝑎𝑏𝑆) ↔ (𝐵𝑎𝐵𝑆)))
43ralbidv 2465 . . . 4 (𝑏 = 𝐵 → (∀𝑎𝑌 (𝑏𝑎𝑏𝑆) ↔ ∀𝑎𝑌 (𝐵𝑎𝐵𝑆)))
5 oveq2 5849 . . . . . 6 (𝑚 = 1 → (1...𝑚) = (1...1))
65raleqdv 2666 . . . . 5 (𝑚 = 1 → (∀𝑏 ∈ (1...𝑚)∀𝑎𝑌 (𝑏𝑎𝑏𝑆) ↔ ∀𝑏 ∈ (1...1)∀𝑎𝑌 (𝑏𝑎𝑏𝑆)))
7 oveq2 5849 . . . . . 6 (𝑚 = 𝑛 → (1...𝑚) = (1...𝑛))
87raleqdv 2666 . . . . 5 (𝑚 = 𝑛 → (∀𝑏 ∈ (1...𝑚)∀𝑎𝑌 (𝑏𝑎𝑏𝑆) ↔ ∀𝑏 ∈ (1...𝑛)∀𝑎𝑌 (𝑏𝑎𝑏𝑆)))
9 oveq2 5849 . . . . . 6 (𝑚 = (𝑛 + 1) → (1...𝑚) = (1...(𝑛 + 1)))
109raleqdv 2666 . . . . 5 (𝑚 = (𝑛 + 1) → (∀𝑏 ∈ (1...𝑚)∀𝑎𝑌 (𝑏𝑎𝑏𝑆) ↔ ∀𝑏 ∈ (1...(𝑛 + 1))∀𝑎𝑌 (𝑏𝑎𝑏𝑆)))
11 oveq2 5849 . . . . . 6 (𝑚 = 𝐵 → (1...𝑚) = (1...𝐵))
1211raleqdv 2666 . . . . 5 (𝑚 = 𝐵 → (∀𝑏 ∈ (1...𝑚)∀𝑎𝑌 (𝑏𝑎𝑏𝑆) ↔ ∀𝑏 ∈ (1...𝐵)∀𝑎𝑌 (𝑏𝑎𝑏𝑆)))
13 elfz1eq 9966 . . . . . . . . 9 (𝑏 ∈ (1...1) → 𝑏 = 1)
14 1z 9213 . . . . . . . . . . . 12 1 ∈ ℤ
15 zgz 12299 . . . . . . . . . . . 12 (1 ∈ ℤ → 1 ∈ ℤ[i])
1614, 15ax-mp 5 . . . . . . . . . . 11 1 ∈ ℤ[i]
17 sq1 10544 . . . . . . . . . . . 12 (1↑2) = 1
1817eqcomi 2169 . . . . . . . . . . 11 1 = (1↑2)
19 fveq2 5485 . . . . . . . . . . . . . 14 (𝑥 = 1 → (abs‘𝑥) = (abs‘1))
20 abs1 11010 . . . . . . . . . . . . . 14 (abs‘1) = 1
2119, 20eqtrdi 2214 . . . . . . . . . . . . 13 (𝑥 = 1 → (abs‘𝑥) = 1)
2221oveq1d 5856 . . . . . . . . . . . 12 (𝑥 = 1 → ((abs‘𝑥)↑2) = (1↑2))
2322rspceeqv 2847 . . . . . . . . . . 11 ((1 ∈ ℤ[i] ∧ 1 = (1↑2)) → ∃𝑥 ∈ ℤ[i] 1 = ((abs‘𝑥)↑2))
2416, 18, 23mp2an 423 . . . . . . . . . 10 𝑥 ∈ ℤ[i] 1 = ((abs‘𝑥)↑2)
25 2sq.1 . . . . . . . . . . 11 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
26252sqlem1 13550 . . . . . . . . . 10 (1 ∈ 𝑆 ↔ ∃𝑥 ∈ ℤ[i] 1 = ((abs‘𝑥)↑2))
2724, 26mpbir 145 . . . . . . . . 9 1 ∈ 𝑆
2813, 27eqeltrdi 2256 . . . . . . . 8 (𝑏 ∈ (1...1) → 𝑏𝑆)
2928a1d 22 . . . . . . 7 (𝑏 ∈ (1...1) → (𝑏𝑎𝑏𝑆))
3029ralrimivw 2539 . . . . . 6 (𝑏 ∈ (1...1) → ∀𝑎𝑌 (𝑏𝑎𝑏𝑆))
3130rgen 2518 . . . . 5 𝑏 ∈ (1...1)∀𝑎𝑌 (𝑏𝑎𝑏𝑆)
32 2sqlem7.2 . . . . . . . . . . . . 13 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))}
33 simplr 520 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ ∧ ∀𝑏 ∈ (1...𝑛)∀𝑎𝑌 (𝑏𝑎𝑏𝑆)) ∧ (𝑚𝑌 ∧ (𝑛 + 1) ∥ 𝑚)) → ∀𝑏 ∈ (1...𝑛)∀𝑎𝑌 (𝑏𝑎𝑏𝑆))
34 nncn 8861 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
3534ad2antrr 480 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ ℕ ∧ ∀𝑏 ∈ (1...𝑛)∀𝑎𝑌 (𝑏𝑎𝑏𝑆)) ∧ (𝑚𝑌 ∧ (𝑛 + 1) ∥ 𝑚)) → 𝑛 ∈ ℂ)
36 ax-1cn 7842 . . . . . . . . . . . . . . . . 17 1 ∈ ℂ
37 pncan 8100 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑛 + 1) − 1) = 𝑛)
3835, 36, 37sylancl 410 . . . . . . . . . . . . . . . 16 (((𝑛 ∈ ℕ ∧ ∀𝑏 ∈ (1...𝑛)∀𝑎𝑌 (𝑏𝑎𝑏𝑆)) ∧ (𝑚𝑌 ∧ (𝑛 + 1) ∥ 𝑚)) → ((𝑛 + 1) − 1) = 𝑛)
3938oveq2d 5857 . . . . . . . . . . . . . . 15 (((𝑛 ∈ ℕ ∧ ∀𝑏 ∈ (1...𝑛)∀𝑎𝑌 (𝑏𝑎𝑏𝑆)) ∧ (𝑚𝑌 ∧ (𝑛 + 1) ∥ 𝑚)) → (1...((𝑛 + 1) − 1)) = (1...𝑛))
4039raleqdv 2666 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ ∧ ∀𝑏 ∈ (1...𝑛)∀𝑎𝑌 (𝑏𝑎𝑏𝑆)) ∧ (𝑚𝑌 ∧ (𝑛 + 1) ∥ 𝑚)) → (∀𝑏 ∈ (1...((𝑛 + 1) − 1))∀𝑎𝑌 (𝑏𝑎𝑏𝑆) ↔ ∀𝑏 ∈ (1...𝑛)∀𝑎𝑌 (𝑏𝑎𝑏𝑆)))
4133, 40mpbird 166 . . . . . . . . . . . . 13 (((𝑛 ∈ ℕ ∧ ∀𝑏 ∈ (1...𝑛)∀𝑎𝑌 (𝑏𝑎𝑏𝑆)) ∧ (𝑚𝑌 ∧ (𝑛 + 1) ∥ 𝑚)) → ∀𝑏 ∈ (1...((𝑛 + 1) − 1))∀𝑎𝑌 (𝑏𝑎𝑏𝑆))
42 simprr 522 . . . . . . . . . . . . 13 (((𝑛 ∈ ℕ ∧ ∀𝑏 ∈ (1...𝑛)∀𝑎𝑌 (𝑏𝑎𝑏𝑆)) ∧ (𝑚𝑌 ∧ (𝑛 + 1) ∥ 𝑚)) → (𝑛 + 1) ∥ 𝑚)
43 peano2nn 8865 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℕ)
4443ad2antrr 480 . . . . . . . . . . . . 13 (((𝑛 ∈ ℕ ∧ ∀𝑏 ∈ (1...𝑛)∀𝑎𝑌 (𝑏𝑎𝑏𝑆)) ∧ (𝑚𝑌 ∧ (𝑛 + 1) ∥ 𝑚)) → (𝑛 + 1) ∈ ℕ)
45 simprl 521 . . . . . . . . . . . . 13 (((𝑛 ∈ ℕ ∧ ∀𝑏 ∈ (1...𝑛)∀𝑎𝑌 (𝑏𝑎𝑏𝑆)) ∧ (𝑚𝑌 ∧ (𝑛 + 1) ∥ 𝑚)) → 𝑚𝑌)
4625, 32, 41, 42, 44, 452sqlem9 13560 . . . . . . . . . . . 12 (((𝑛 ∈ ℕ ∧ ∀𝑏 ∈ (1...𝑛)∀𝑎𝑌 (𝑏𝑎𝑏𝑆)) ∧ (𝑚𝑌 ∧ (𝑛 + 1) ∥ 𝑚)) → (𝑛 + 1) ∈ 𝑆)
4746expr 373 . . . . . . . . . . 11 (((𝑛 ∈ ℕ ∧ ∀𝑏 ∈ (1...𝑛)∀𝑎𝑌 (𝑏𝑎𝑏𝑆)) ∧ 𝑚𝑌) → ((𝑛 + 1) ∥ 𝑚 → (𝑛 + 1) ∈ 𝑆))
4847ralrimiva 2538 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ ∀𝑏 ∈ (1...𝑛)∀𝑎𝑌 (𝑏𝑎𝑏𝑆)) → ∀𝑚𝑌 ((𝑛 + 1) ∥ 𝑚 → (𝑛 + 1) ∈ 𝑆))
4948ex 114 . . . . . . . . 9 (𝑛 ∈ ℕ → (∀𝑏 ∈ (1...𝑛)∀𝑎𝑌 (𝑏𝑎𝑏𝑆) → ∀𝑚𝑌 ((𝑛 + 1) ∥ 𝑚 → (𝑛 + 1) ∈ 𝑆)))
50 breq2 3985 . . . . . . . . . . 11 (𝑎 = 𝑚 → ((𝑛 + 1) ∥ 𝑎 ↔ (𝑛 + 1) ∥ 𝑚))
5150imbi1d 230 . . . . . . . . . 10 (𝑎 = 𝑚 → (((𝑛 + 1) ∥ 𝑎 → (𝑛 + 1) ∈ 𝑆) ↔ ((𝑛 + 1) ∥ 𝑚 → (𝑛 + 1) ∈ 𝑆)))
5251cbvralvw 2695 . . . . . . . . 9 (∀𝑎𝑌 ((𝑛 + 1) ∥ 𝑎 → (𝑛 + 1) ∈ 𝑆) ↔ ∀𝑚𝑌 ((𝑛 + 1) ∥ 𝑚 → (𝑛 + 1) ∈ 𝑆))
5349, 52syl6ibr 161 . . . . . . . 8 (𝑛 ∈ ℕ → (∀𝑏 ∈ (1...𝑛)∀𝑎𝑌 (𝑏𝑎𝑏𝑆) → ∀𝑎𝑌 ((𝑛 + 1) ∥ 𝑎 → (𝑛 + 1) ∈ 𝑆)))
54 breq1 3984 . . . . . . . . . . . 12 (𝑏 = (𝑛 + 1) → (𝑏𝑎 ↔ (𝑛 + 1) ∥ 𝑎))
55 eleq1 2228 . . . . . . . . . . . 12 (𝑏 = (𝑛 + 1) → (𝑏𝑆 ↔ (𝑛 + 1) ∈ 𝑆))
5654, 55imbi12d 233 . . . . . . . . . . 11 (𝑏 = (𝑛 + 1) → ((𝑏𝑎𝑏𝑆) ↔ ((𝑛 + 1) ∥ 𝑎 → (𝑛 + 1) ∈ 𝑆)))
5756ralbidv 2465 . . . . . . . . . 10 (𝑏 = (𝑛 + 1) → (∀𝑎𝑌 (𝑏𝑎𝑏𝑆) ↔ ∀𝑎𝑌 ((𝑛 + 1) ∥ 𝑎 → (𝑛 + 1) ∈ 𝑆)))
5857ralsng 3615 . . . . . . . . 9 ((𝑛 + 1) ∈ ℕ → (∀𝑏 ∈ {(𝑛 + 1)}∀𝑎𝑌 (𝑏𝑎𝑏𝑆) ↔ ∀𝑎𝑌 ((𝑛 + 1) ∥ 𝑎 → (𝑛 + 1) ∈ 𝑆)))
5943, 58syl 14 . . . . . . . 8 (𝑛 ∈ ℕ → (∀𝑏 ∈ {(𝑛 + 1)}∀𝑎𝑌 (𝑏𝑎𝑏𝑆) ↔ ∀𝑎𝑌 ((𝑛 + 1) ∥ 𝑎 → (𝑛 + 1) ∈ 𝑆)))
6053, 59sylibrd 168 . . . . . . 7 (𝑛 ∈ ℕ → (∀𝑏 ∈ (1...𝑛)∀𝑎𝑌 (𝑏𝑎𝑏𝑆) → ∀𝑏 ∈ {(𝑛 + 1)}∀𝑎𝑌 (𝑏𝑎𝑏𝑆)))
6160ancld 323 . . . . . 6 (𝑛 ∈ ℕ → (∀𝑏 ∈ (1...𝑛)∀𝑎𝑌 (𝑏𝑎𝑏𝑆) → (∀𝑏 ∈ (1...𝑛)∀𝑎𝑌 (𝑏𝑎𝑏𝑆) ∧ ∀𝑏 ∈ {(𝑛 + 1)}∀𝑎𝑌 (𝑏𝑎𝑏𝑆))))
62 elnnuz 9498 . . . . . . . . 9 (𝑛 ∈ ℕ ↔ 𝑛 ∈ (ℤ‘1))
63 fzsuc 10000 . . . . . . . . 9 (𝑛 ∈ (ℤ‘1) → (1...(𝑛 + 1)) = ((1...𝑛) ∪ {(𝑛 + 1)}))
6462, 63sylbi 120 . . . . . . . 8 (𝑛 ∈ ℕ → (1...(𝑛 + 1)) = ((1...𝑛) ∪ {(𝑛 + 1)}))
6564raleqdv 2666 . . . . . . 7 (𝑛 ∈ ℕ → (∀𝑏 ∈ (1...(𝑛 + 1))∀𝑎𝑌 (𝑏𝑎𝑏𝑆) ↔ ∀𝑏 ∈ ((1...𝑛) ∪ {(𝑛 + 1)})∀𝑎𝑌 (𝑏𝑎𝑏𝑆)))
66 ralunb 3302 . . . . . . 7 (∀𝑏 ∈ ((1...𝑛) ∪ {(𝑛 + 1)})∀𝑎𝑌 (𝑏𝑎𝑏𝑆) ↔ (∀𝑏 ∈ (1...𝑛)∀𝑎𝑌 (𝑏𝑎𝑏𝑆) ∧ ∀𝑏 ∈ {(𝑛 + 1)}∀𝑎𝑌 (𝑏𝑎𝑏𝑆)))
6765, 66bitrdi 195 . . . . . 6 (𝑛 ∈ ℕ → (∀𝑏 ∈ (1...(𝑛 + 1))∀𝑎𝑌 (𝑏𝑎𝑏𝑆) ↔ (∀𝑏 ∈ (1...𝑛)∀𝑎𝑌 (𝑏𝑎𝑏𝑆) ∧ ∀𝑏 ∈ {(𝑛 + 1)}∀𝑎𝑌 (𝑏𝑎𝑏𝑆))))
6861, 67sylibrd 168 . . . . 5 (𝑛 ∈ ℕ → (∀𝑏 ∈ (1...𝑛)∀𝑎𝑌 (𝑏𝑎𝑏𝑆) → ∀𝑏 ∈ (1...(𝑛 + 1))∀𝑎𝑌 (𝑏𝑎𝑏𝑆)))
696, 8, 10, 12, 31, 68nnind 8869 . . . 4 (𝐵 ∈ ℕ → ∀𝑏 ∈ (1...𝐵)∀𝑎𝑌 (𝑏𝑎𝑏𝑆))
70 elfz1end 9986 . . . . 5 (𝐵 ∈ ℕ ↔ 𝐵 ∈ (1...𝐵))
7170biimpi 119 . . . 4 (𝐵 ∈ ℕ → 𝐵 ∈ (1...𝐵))
724, 69, 71rspcdva 2834 . . 3 (𝐵 ∈ ℕ → ∀𝑎𝑌 (𝐵𝑎𝐵𝑆))
73 breq2 3985 . . . . 5 (𝑎 = 𝐴 → (𝐵𝑎𝐵𝐴))
7473imbi1d 230 . . . 4 (𝑎 = 𝐴 → ((𝐵𝑎𝐵𝑆) ↔ (𝐵𝐴𝐵𝑆)))
7574rspcv 2825 . . 3 (𝐴𝑌 → (∀𝑎𝑌 (𝐵𝑎𝐵𝑆) → (𝐵𝐴𝐵𝑆)))
7672, 75syl5 32 . 2 (𝐴𝑌 → (𝐵 ∈ ℕ → (𝐵𝐴𝐵𝑆)))
77763imp 1183 1 ((𝐴𝑌𝐵 ∈ ℕ ∧ 𝐵𝐴) → 𝐵𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 968   = wceq 1343  wcel 2136  {cab 2151  wral 2443  wrex 2444  cun 3113  {csn 3575   class class class wbr 3981  cmpt 4042  ran crn 4604  cfv 5187  (class class class)co 5841  cc 7747  1c1 7750   + caddc 7752  cmin 8065  cn 8853  2c2 8904  cz 9187  cuz 9462  ...cfz 9940  cexp 10450  abscabs 10935  cdvds 11723   gcd cgcd 11871  ℤ[i]cgz 12295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4096  ax-sep 4099  ax-nul 4107  ax-pow 4152  ax-pr 4186  ax-un 4410  ax-setind 4513  ax-iinf 4564  ax-cnex 7840  ax-resscn 7841  ax-1cn 7842  ax-1re 7843  ax-icn 7844  ax-addcl 7845  ax-addrcl 7846  ax-mulcl 7847  ax-mulrcl 7848  ax-addcom 7849  ax-mulcom 7850  ax-addass 7851  ax-mulass 7852  ax-distr 7853  ax-i2m1 7854  ax-0lt1 7855  ax-1rid 7856  ax-0id 7857  ax-rnegex 7858  ax-precex 7859  ax-cnre 7860  ax-pre-ltirr 7861  ax-pre-ltwlin 7862  ax-pre-lttrn 7863  ax-pre-apti 7864  ax-pre-ltadd 7865  ax-pre-mulgt0 7866  ax-pre-mulext 7867  ax-arch 7868  ax-caucvg 7869
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ne 2336  df-nel 2431  df-ral 2448  df-rex 2449  df-reu 2450  df-rmo 2451  df-rab 2452  df-v 2727  df-sbc 2951  df-csb 3045  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-nul 3409  df-if 3520  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-int 3824  df-iun 3867  df-br 3982  df-opab 4043  df-mpt 4044  df-tr 4080  df-id 4270  df-po 4273  df-iso 4274  df-iord 4343  df-on 4345  df-ilim 4346  df-suc 4348  df-iom 4567  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-rn 4614  df-res 4615  df-ima 4616  df-iota 5152  df-fun 5189  df-fn 5190  df-f 5191  df-f1 5192  df-fo 5193  df-f1o 5194  df-fv 5195  df-riota 5797  df-ov 5844  df-oprab 5845  df-mpo 5846  df-1st 6105  df-2nd 6106  df-recs 6269  df-frec 6355  df-1o 6380  df-2o 6381  df-er 6497  df-en 6703  df-sup 6945  df-pnf 7931  df-mnf 7932  df-xr 7933  df-ltxr 7934  df-le 7935  df-sub 8067  df-neg 8068  df-reap 8469  df-ap 8476  df-div 8565  df-inn 8854  df-2 8912  df-3 8913  df-4 8914  df-n0 9111  df-z 9188  df-uz 9463  df-q 9554  df-rp 9586  df-fz 9941  df-fzo 10074  df-fl 10201  df-mod 10254  df-seqfrec 10377  df-exp 10451  df-cj 10780  df-re 10781  df-im 10782  df-rsqrt 10936  df-abs 10937  df-dvds 11724  df-gcd 11872  df-prm 12036  df-gz 12296
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator