ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2sqlem10 GIF version

Theorem 2sqlem10 15804
Description: Lemma for 2sq . Every factor of a "proper" sum of two squares (where the summands are coprime) is a sum of two squares. (Contributed by Mario Carneiro, 19-Jun-2015.)
Hypotheses
Ref Expression
2sq.1 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
2sqlem7.2 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))}
Assertion
Ref Expression
2sqlem10 ((𝐴𝑌𝐵 ∈ ℕ ∧ 𝐵𝐴) → 𝐵𝑆)
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦   𝑥,𝑆,𝑦,𝑧   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐴(𝑤)   𝐵(𝑧,𝑤)   𝑆(𝑤)   𝑌(𝑧,𝑤)

Proof of Theorem 2sqlem10
Dummy variables 𝑎 𝑏 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 4086 . . . . . 6 (𝑏 = 𝐵 → (𝑏𝑎𝐵𝑎))
2 eleq1 2292 . . . . . 6 (𝑏 = 𝐵 → (𝑏𝑆𝐵𝑆))
31, 2imbi12d 234 . . . . 5 (𝑏 = 𝐵 → ((𝑏𝑎𝑏𝑆) ↔ (𝐵𝑎𝐵𝑆)))
43ralbidv 2530 . . . 4 (𝑏 = 𝐵 → (∀𝑎𝑌 (𝑏𝑎𝑏𝑆) ↔ ∀𝑎𝑌 (𝐵𝑎𝐵𝑆)))
5 oveq2 6009 . . . . . 6 (𝑚 = 1 → (1...𝑚) = (1...1))
65raleqdv 2734 . . . . 5 (𝑚 = 1 → (∀𝑏 ∈ (1...𝑚)∀𝑎𝑌 (𝑏𝑎𝑏𝑆) ↔ ∀𝑏 ∈ (1...1)∀𝑎𝑌 (𝑏𝑎𝑏𝑆)))
7 oveq2 6009 . . . . . 6 (𝑚 = 𝑛 → (1...𝑚) = (1...𝑛))
87raleqdv 2734 . . . . 5 (𝑚 = 𝑛 → (∀𝑏 ∈ (1...𝑚)∀𝑎𝑌 (𝑏𝑎𝑏𝑆) ↔ ∀𝑏 ∈ (1...𝑛)∀𝑎𝑌 (𝑏𝑎𝑏𝑆)))
9 oveq2 6009 . . . . . 6 (𝑚 = (𝑛 + 1) → (1...𝑚) = (1...(𝑛 + 1)))
109raleqdv 2734 . . . . 5 (𝑚 = (𝑛 + 1) → (∀𝑏 ∈ (1...𝑚)∀𝑎𝑌 (𝑏𝑎𝑏𝑆) ↔ ∀𝑏 ∈ (1...(𝑛 + 1))∀𝑎𝑌 (𝑏𝑎𝑏𝑆)))
11 oveq2 6009 . . . . . 6 (𝑚 = 𝐵 → (1...𝑚) = (1...𝐵))
1211raleqdv 2734 . . . . 5 (𝑚 = 𝐵 → (∀𝑏 ∈ (1...𝑚)∀𝑎𝑌 (𝑏𝑎𝑏𝑆) ↔ ∀𝑏 ∈ (1...𝐵)∀𝑎𝑌 (𝑏𝑎𝑏𝑆)))
13 elfz1eq 10231 . . . . . . . . 9 (𝑏 ∈ (1...1) → 𝑏 = 1)
14 1z 9472 . . . . . . . . . . . 12 1 ∈ ℤ
15 zgz 12896 . . . . . . . . . . . 12 (1 ∈ ℤ → 1 ∈ ℤ[i])
1614, 15ax-mp 5 . . . . . . . . . . 11 1 ∈ ℤ[i]
17 sq1 10855 . . . . . . . . . . . 12 (1↑2) = 1
1817eqcomi 2233 . . . . . . . . . . 11 1 = (1↑2)
19 fveq2 5627 . . . . . . . . . . . . . 14 (𝑥 = 1 → (abs‘𝑥) = (abs‘1))
20 abs1 11583 . . . . . . . . . . . . . 14 (abs‘1) = 1
2119, 20eqtrdi 2278 . . . . . . . . . . . . 13 (𝑥 = 1 → (abs‘𝑥) = 1)
2221oveq1d 6016 . . . . . . . . . . . 12 (𝑥 = 1 → ((abs‘𝑥)↑2) = (1↑2))
2322rspceeqv 2925 . . . . . . . . . . 11 ((1 ∈ ℤ[i] ∧ 1 = (1↑2)) → ∃𝑥 ∈ ℤ[i] 1 = ((abs‘𝑥)↑2))
2416, 18, 23mp2an 426 . . . . . . . . . 10 𝑥 ∈ ℤ[i] 1 = ((abs‘𝑥)↑2)
25 2sq.1 . . . . . . . . . . 11 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
26252sqlem1 15793 . . . . . . . . . 10 (1 ∈ 𝑆 ↔ ∃𝑥 ∈ ℤ[i] 1 = ((abs‘𝑥)↑2))
2724, 26mpbir 146 . . . . . . . . 9 1 ∈ 𝑆
2813, 27eqeltrdi 2320 . . . . . . . 8 (𝑏 ∈ (1...1) → 𝑏𝑆)
2928a1d 22 . . . . . . 7 (𝑏 ∈ (1...1) → (𝑏𝑎𝑏𝑆))
3029ralrimivw 2604 . . . . . 6 (𝑏 ∈ (1...1) → ∀𝑎𝑌 (𝑏𝑎𝑏𝑆))
3130rgen 2583 . . . . 5 𝑏 ∈ (1...1)∀𝑎𝑌 (𝑏𝑎𝑏𝑆)
32 2sqlem7.2 . . . . . . . . . . . . 13 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))}
33 simplr 528 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ ∧ ∀𝑏 ∈ (1...𝑛)∀𝑎𝑌 (𝑏𝑎𝑏𝑆)) ∧ (𝑚𝑌 ∧ (𝑛 + 1) ∥ 𝑚)) → ∀𝑏 ∈ (1...𝑛)∀𝑎𝑌 (𝑏𝑎𝑏𝑆))
34 nncn 9118 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
3534ad2antrr 488 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ ℕ ∧ ∀𝑏 ∈ (1...𝑛)∀𝑎𝑌 (𝑏𝑎𝑏𝑆)) ∧ (𝑚𝑌 ∧ (𝑛 + 1) ∥ 𝑚)) → 𝑛 ∈ ℂ)
36 ax-1cn 8092 . . . . . . . . . . . . . . . . 17 1 ∈ ℂ
37 pncan 8352 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑛 + 1) − 1) = 𝑛)
3835, 36, 37sylancl 413 . . . . . . . . . . . . . . . 16 (((𝑛 ∈ ℕ ∧ ∀𝑏 ∈ (1...𝑛)∀𝑎𝑌 (𝑏𝑎𝑏𝑆)) ∧ (𝑚𝑌 ∧ (𝑛 + 1) ∥ 𝑚)) → ((𝑛 + 1) − 1) = 𝑛)
3938oveq2d 6017 . . . . . . . . . . . . . . 15 (((𝑛 ∈ ℕ ∧ ∀𝑏 ∈ (1...𝑛)∀𝑎𝑌 (𝑏𝑎𝑏𝑆)) ∧ (𝑚𝑌 ∧ (𝑛 + 1) ∥ 𝑚)) → (1...((𝑛 + 1) − 1)) = (1...𝑛))
4039raleqdv 2734 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ ∧ ∀𝑏 ∈ (1...𝑛)∀𝑎𝑌 (𝑏𝑎𝑏𝑆)) ∧ (𝑚𝑌 ∧ (𝑛 + 1) ∥ 𝑚)) → (∀𝑏 ∈ (1...((𝑛 + 1) − 1))∀𝑎𝑌 (𝑏𝑎𝑏𝑆) ↔ ∀𝑏 ∈ (1...𝑛)∀𝑎𝑌 (𝑏𝑎𝑏𝑆)))
4133, 40mpbird 167 . . . . . . . . . . . . 13 (((𝑛 ∈ ℕ ∧ ∀𝑏 ∈ (1...𝑛)∀𝑎𝑌 (𝑏𝑎𝑏𝑆)) ∧ (𝑚𝑌 ∧ (𝑛 + 1) ∥ 𝑚)) → ∀𝑏 ∈ (1...((𝑛 + 1) − 1))∀𝑎𝑌 (𝑏𝑎𝑏𝑆))
42 simprr 531 . . . . . . . . . . . . 13 (((𝑛 ∈ ℕ ∧ ∀𝑏 ∈ (1...𝑛)∀𝑎𝑌 (𝑏𝑎𝑏𝑆)) ∧ (𝑚𝑌 ∧ (𝑛 + 1) ∥ 𝑚)) → (𝑛 + 1) ∥ 𝑚)
43 peano2nn 9122 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℕ)
4443ad2antrr 488 . . . . . . . . . . . . 13 (((𝑛 ∈ ℕ ∧ ∀𝑏 ∈ (1...𝑛)∀𝑎𝑌 (𝑏𝑎𝑏𝑆)) ∧ (𝑚𝑌 ∧ (𝑛 + 1) ∥ 𝑚)) → (𝑛 + 1) ∈ ℕ)
45 simprl 529 . . . . . . . . . . . . 13 (((𝑛 ∈ ℕ ∧ ∀𝑏 ∈ (1...𝑛)∀𝑎𝑌 (𝑏𝑎𝑏𝑆)) ∧ (𝑚𝑌 ∧ (𝑛 + 1) ∥ 𝑚)) → 𝑚𝑌)
4625, 32, 41, 42, 44, 452sqlem9 15803 . . . . . . . . . . . 12 (((𝑛 ∈ ℕ ∧ ∀𝑏 ∈ (1...𝑛)∀𝑎𝑌 (𝑏𝑎𝑏𝑆)) ∧ (𝑚𝑌 ∧ (𝑛 + 1) ∥ 𝑚)) → (𝑛 + 1) ∈ 𝑆)
4746expr 375 . . . . . . . . . . 11 (((𝑛 ∈ ℕ ∧ ∀𝑏 ∈ (1...𝑛)∀𝑎𝑌 (𝑏𝑎𝑏𝑆)) ∧ 𝑚𝑌) → ((𝑛 + 1) ∥ 𝑚 → (𝑛 + 1) ∈ 𝑆))
4847ralrimiva 2603 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ ∀𝑏 ∈ (1...𝑛)∀𝑎𝑌 (𝑏𝑎𝑏𝑆)) → ∀𝑚𝑌 ((𝑛 + 1) ∥ 𝑚 → (𝑛 + 1) ∈ 𝑆))
4948ex 115 . . . . . . . . 9 (𝑛 ∈ ℕ → (∀𝑏 ∈ (1...𝑛)∀𝑎𝑌 (𝑏𝑎𝑏𝑆) → ∀𝑚𝑌 ((𝑛 + 1) ∥ 𝑚 → (𝑛 + 1) ∈ 𝑆)))
50 breq2 4087 . . . . . . . . . . 11 (𝑎 = 𝑚 → ((𝑛 + 1) ∥ 𝑎 ↔ (𝑛 + 1) ∥ 𝑚))
5150imbi1d 231 . . . . . . . . . 10 (𝑎 = 𝑚 → (((𝑛 + 1) ∥ 𝑎 → (𝑛 + 1) ∈ 𝑆) ↔ ((𝑛 + 1) ∥ 𝑚 → (𝑛 + 1) ∈ 𝑆)))
5251cbvralvw 2769 . . . . . . . . 9 (∀𝑎𝑌 ((𝑛 + 1) ∥ 𝑎 → (𝑛 + 1) ∈ 𝑆) ↔ ∀𝑚𝑌 ((𝑛 + 1) ∥ 𝑚 → (𝑛 + 1) ∈ 𝑆))
5349, 52imbitrrdi 162 . . . . . . . 8 (𝑛 ∈ ℕ → (∀𝑏 ∈ (1...𝑛)∀𝑎𝑌 (𝑏𝑎𝑏𝑆) → ∀𝑎𝑌 ((𝑛 + 1) ∥ 𝑎 → (𝑛 + 1) ∈ 𝑆)))
54 breq1 4086 . . . . . . . . . . . 12 (𝑏 = (𝑛 + 1) → (𝑏𝑎 ↔ (𝑛 + 1) ∥ 𝑎))
55 eleq1 2292 . . . . . . . . . . . 12 (𝑏 = (𝑛 + 1) → (𝑏𝑆 ↔ (𝑛 + 1) ∈ 𝑆))
5654, 55imbi12d 234 . . . . . . . . . . 11 (𝑏 = (𝑛 + 1) → ((𝑏𝑎𝑏𝑆) ↔ ((𝑛 + 1) ∥ 𝑎 → (𝑛 + 1) ∈ 𝑆)))
5756ralbidv 2530 . . . . . . . . . 10 (𝑏 = (𝑛 + 1) → (∀𝑎𝑌 (𝑏𝑎𝑏𝑆) ↔ ∀𝑎𝑌 ((𝑛 + 1) ∥ 𝑎 → (𝑛 + 1) ∈ 𝑆)))
5857ralsng 3706 . . . . . . . . 9 ((𝑛 + 1) ∈ ℕ → (∀𝑏 ∈ {(𝑛 + 1)}∀𝑎𝑌 (𝑏𝑎𝑏𝑆) ↔ ∀𝑎𝑌 ((𝑛 + 1) ∥ 𝑎 → (𝑛 + 1) ∈ 𝑆)))
5943, 58syl 14 . . . . . . . 8 (𝑛 ∈ ℕ → (∀𝑏 ∈ {(𝑛 + 1)}∀𝑎𝑌 (𝑏𝑎𝑏𝑆) ↔ ∀𝑎𝑌 ((𝑛 + 1) ∥ 𝑎 → (𝑛 + 1) ∈ 𝑆)))
6053, 59sylibrd 169 . . . . . . 7 (𝑛 ∈ ℕ → (∀𝑏 ∈ (1...𝑛)∀𝑎𝑌 (𝑏𝑎𝑏𝑆) → ∀𝑏 ∈ {(𝑛 + 1)}∀𝑎𝑌 (𝑏𝑎𝑏𝑆)))
6160ancld 325 . . . . . 6 (𝑛 ∈ ℕ → (∀𝑏 ∈ (1...𝑛)∀𝑎𝑌 (𝑏𝑎𝑏𝑆) → (∀𝑏 ∈ (1...𝑛)∀𝑎𝑌 (𝑏𝑎𝑏𝑆) ∧ ∀𝑏 ∈ {(𝑛 + 1)}∀𝑎𝑌 (𝑏𝑎𝑏𝑆))))
62 elnnuz 9759 . . . . . . . . 9 (𝑛 ∈ ℕ ↔ 𝑛 ∈ (ℤ‘1))
63 fzsuc 10265 . . . . . . . . 9 (𝑛 ∈ (ℤ‘1) → (1...(𝑛 + 1)) = ((1...𝑛) ∪ {(𝑛 + 1)}))
6462, 63sylbi 121 . . . . . . . 8 (𝑛 ∈ ℕ → (1...(𝑛 + 1)) = ((1...𝑛) ∪ {(𝑛 + 1)}))
6564raleqdv 2734 . . . . . . 7 (𝑛 ∈ ℕ → (∀𝑏 ∈ (1...(𝑛 + 1))∀𝑎𝑌 (𝑏𝑎𝑏𝑆) ↔ ∀𝑏 ∈ ((1...𝑛) ∪ {(𝑛 + 1)})∀𝑎𝑌 (𝑏𝑎𝑏𝑆)))
66 ralunb 3385 . . . . . . 7 (∀𝑏 ∈ ((1...𝑛) ∪ {(𝑛 + 1)})∀𝑎𝑌 (𝑏𝑎𝑏𝑆) ↔ (∀𝑏 ∈ (1...𝑛)∀𝑎𝑌 (𝑏𝑎𝑏𝑆) ∧ ∀𝑏 ∈ {(𝑛 + 1)}∀𝑎𝑌 (𝑏𝑎𝑏𝑆)))
6765, 66bitrdi 196 . . . . . 6 (𝑛 ∈ ℕ → (∀𝑏 ∈ (1...(𝑛 + 1))∀𝑎𝑌 (𝑏𝑎𝑏𝑆) ↔ (∀𝑏 ∈ (1...𝑛)∀𝑎𝑌 (𝑏𝑎𝑏𝑆) ∧ ∀𝑏 ∈ {(𝑛 + 1)}∀𝑎𝑌 (𝑏𝑎𝑏𝑆))))
6861, 67sylibrd 169 . . . . 5 (𝑛 ∈ ℕ → (∀𝑏 ∈ (1...𝑛)∀𝑎𝑌 (𝑏𝑎𝑏𝑆) → ∀𝑏 ∈ (1...(𝑛 + 1))∀𝑎𝑌 (𝑏𝑎𝑏𝑆)))
696, 8, 10, 12, 31, 68nnind 9126 . . . 4 (𝐵 ∈ ℕ → ∀𝑏 ∈ (1...𝐵)∀𝑎𝑌 (𝑏𝑎𝑏𝑆))
70 elfz1end 10251 . . . . 5 (𝐵 ∈ ℕ ↔ 𝐵 ∈ (1...𝐵))
7170biimpi 120 . . . 4 (𝐵 ∈ ℕ → 𝐵 ∈ (1...𝐵))
724, 69, 71rspcdva 2912 . . 3 (𝐵 ∈ ℕ → ∀𝑎𝑌 (𝐵𝑎𝐵𝑆))
73 breq2 4087 . . . . 5 (𝑎 = 𝐴 → (𝐵𝑎𝐵𝐴))
7473imbi1d 231 . . . 4 (𝑎 = 𝐴 → ((𝐵𝑎𝐵𝑆) ↔ (𝐵𝐴𝐵𝑆)))
7574rspcv 2903 . . 3 (𝐴𝑌 → (∀𝑎𝑌 (𝐵𝑎𝐵𝑆) → (𝐵𝐴𝐵𝑆)))
7672, 75syl5 32 . 2 (𝐴𝑌 → (𝐵 ∈ ℕ → (𝐵𝐴𝐵𝑆)))
77763imp 1217 1 ((𝐴𝑌𝐵 ∈ ℕ ∧ 𝐵𝐴) → 𝐵𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wcel 2200  {cab 2215  wral 2508  wrex 2509  cun 3195  {csn 3666   class class class wbr 4083  cmpt 4145  ran crn 4720  cfv 5318  (class class class)co 6001  cc 7997  1c1 8000   + caddc 8002  cmin 8317  cn 9110  2c2 9161  cz 9446  cuz 9722  ...cfz 10204  cexp 10760  abscabs 11508  cdvds 12298   gcd cgcd 12474  ℤ[i]cgz 12892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-1o 6562  df-2o 6563  df-er 6680  df-en 6888  df-sup 7151  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-z 9447  df-uz 9723  df-q 9815  df-rp 9850  df-fz 10205  df-fzo 10339  df-fl 10490  df-mod 10545  df-seqfrec 10670  df-exp 10761  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-dvds 12299  df-gcd 12475  df-prm 12630  df-gz 12893
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator