Step | Hyp | Ref
| Expression |
1 | | breq1 3992 |
. . . . . 6
⊢ (𝑏 = 𝐵 → (𝑏 ∥ 𝑎 ↔ 𝐵 ∥ 𝑎)) |
2 | | eleq1 2233 |
. . . . . 6
⊢ (𝑏 = 𝐵 → (𝑏 ∈ 𝑆 ↔ 𝐵 ∈ 𝑆)) |
3 | 1, 2 | imbi12d 233 |
. . . . 5
⊢ (𝑏 = 𝐵 → ((𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆) ↔ (𝐵 ∥ 𝑎 → 𝐵 ∈ 𝑆))) |
4 | 3 | ralbidv 2470 |
. . . 4
⊢ (𝑏 = 𝐵 → (∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆) ↔ ∀𝑎 ∈ 𝑌 (𝐵 ∥ 𝑎 → 𝐵 ∈ 𝑆))) |
5 | | oveq2 5861 |
. . . . . 6
⊢ (𝑚 = 1 → (1...𝑚) = (1...1)) |
6 | 5 | raleqdv 2671 |
. . . . 5
⊢ (𝑚 = 1 → (∀𝑏 ∈ (1...𝑚)∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆) ↔ ∀𝑏 ∈ (1...1)∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆))) |
7 | | oveq2 5861 |
. . . . . 6
⊢ (𝑚 = 𝑛 → (1...𝑚) = (1...𝑛)) |
8 | 7 | raleqdv 2671 |
. . . . 5
⊢ (𝑚 = 𝑛 → (∀𝑏 ∈ (1...𝑚)∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆) ↔ ∀𝑏 ∈ (1...𝑛)∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆))) |
9 | | oveq2 5861 |
. . . . . 6
⊢ (𝑚 = (𝑛 + 1) → (1...𝑚) = (1...(𝑛 + 1))) |
10 | 9 | raleqdv 2671 |
. . . . 5
⊢ (𝑚 = (𝑛 + 1) → (∀𝑏 ∈ (1...𝑚)∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆) ↔ ∀𝑏 ∈ (1...(𝑛 + 1))∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆))) |
11 | | oveq2 5861 |
. . . . . 6
⊢ (𝑚 = 𝐵 → (1...𝑚) = (1...𝐵)) |
12 | 11 | raleqdv 2671 |
. . . . 5
⊢ (𝑚 = 𝐵 → (∀𝑏 ∈ (1...𝑚)∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆) ↔ ∀𝑏 ∈ (1...𝐵)∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆))) |
13 | | elfz1eq 9991 |
. . . . . . . . 9
⊢ (𝑏 ∈ (1...1) → 𝑏 = 1) |
14 | | 1z 9238 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℤ |
15 | | zgz 12325 |
. . . . . . . . . . . 12
⊢ (1 ∈
ℤ → 1 ∈ ℤ[i]) |
16 | 14, 15 | ax-mp 5 |
. . . . . . . . . . 11
⊢ 1 ∈
ℤ[i] |
17 | | sq1 10569 |
. . . . . . . . . . . 12
⊢
(1↑2) = 1 |
18 | 17 | eqcomi 2174 |
. . . . . . . . . . 11
⊢ 1 =
(1↑2) |
19 | | fveq2 5496 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 1 → (abs‘𝑥) =
(abs‘1)) |
20 | | abs1 11036 |
. . . . . . . . . . . . . 14
⊢
(abs‘1) = 1 |
21 | 19, 20 | eqtrdi 2219 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 1 → (abs‘𝑥) = 1) |
22 | 21 | oveq1d 5868 |
. . . . . . . . . . . 12
⊢ (𝑥 = 1 → ((abs‘𝑥)↑2) =
(1↑2)) |
23 | 22 | rspceeqv 2852 |
. . . . . . . . . . 11
⊢ ((1
∈ ℤ[i] ∧ 1 = (1↑2)) → ∃𝑥 ∈ ℤ[i] 1 = ((abs‘𝑥)↑2)) |
24 | 16, 18, 23 | mp2an 424 |
. . . . . . . . . 10
⊢
∃𝑥 ∈
ℤ[i] 1 = ((abs‘𝑥)↑2) |
25 | | 2sq.1 |
. . . . . . . . . . 11
⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) |
26 | 25 | 2sqlem1 13744 |
. . . . . . . . . 10
⊢ (1 ∈
𝑆 ↔ ∃𝑥 ∈ ℤ[i] 1 =
((abs‘𝑥)↑2)) |
27 | 24, 26 | mpbir 145 |
. . . . . . . . 9
⊢ 1 ∈
𝑆 |
28 | 13, 27 | eqeltrdi 2261 |
. . . . . . . 8
⊢ (𝑏 ∈ (1...1) → 𝑏 ∈ 𝑆) |
29 | 28 | a1d 22 |
. . . . . . 7
⊢ (𝑏 ∈ (1...1) → (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆)) |
30 | 29 | ralrimivw 2544 |
. . . . . 6
⊢ (𝑏 ∈ (1...1) →
∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆)) |
31 | 30 | rgen 2523 |
. . . . 5
⊢
∀𝑏 ∈
(1...1)∀𝑎 ∈
𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆) |
32 | | 2sqlem7.2 |
. . . . . . . . . . . . 13
⊢ 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))} |
33 | | simplr 525 |
. . . . . . . . . . . . . 14
⊢ (((𝑛 ∈ ℕ ∧
∀𝑏 ∈ (1...𝑛)∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆)) ∧ (𝑚 ∈ 𝑌 ∧ (𝑛 + 1) ∥ 𝑚)) → ∀𝑏 ∈ (1...𝑛)∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆)) |
34 | | nncn 8886 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℂ) |
35 | 34 | ad2antrr 485 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑛 ∈ ℕ ∧
∀𝑏 ∈ (1...𝑛)∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆)) ∧ (𝑚 ∈ 𝑌 ∧ (𝑛 + 1) ∥ 𝑚)) → 𝑛 ∈ ℂ) |
36 | | ax-1cn 7867 |
. . . . . . . . . . . . . . . . 17
⊢ 1 ∈
ℂ |
37 | | pncan 8125 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑛 + 1)
− 1) = 𝑛) |
38 | 35, 36, 37 | sylancl 411 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑛 ∈ ℕ ∧
∀𝑏 ∈ (1...𝑛)∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆)) ∧ (𝑚 ∈ 𝑌 ∧ (𝑛 + 1) ∥ 𝑚)) → ((𝑛 + 1) − 1) = 𝑛) |
39 | 38 | oveq2d 5869 |
. . . . . . . . . . . . . . 15
⊢ (((𝑛 ∈ ℕ ∧
∀𝑏 ∈ (1...𝑛)∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆)) ∧ (𝑚 ∈ 𝑌 ∧ (𝑛 + 1) ∥ 𝑚)) → (1...((𝑛 + 1) − 1)) = (1...𝑛)) |
40 | 39 | raleqdv 2671 |
. . . . . . . . . . . . . 14
⊢ (((𝑛 ∈ ℕ ∧
∀𝑏 ∈ (1...𝑛)∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆)) ∧ (𝑚 ∈ 𝑌 ∧ (𝑛 + 1) ∥ 𝑚)) → (∀𝑏 ∈ (1...((𝑛 + 1) − 1))∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆) ↔ ∀𝑏 ∈ (1...𝑛)∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆))) |
41 | 33, 40 | mpbird 166 |
. . . . . . . . . . . . 13
⊢ (((𝑛 ∈ ℕ ∧
∀𝑏 ∈ (1...𝑛)∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆)) ∧ (𝑚 ∈ 𝑌 ∧ (𝑛 + 1) ∥ 𝑚)) → ∀𝑏 ∈ (1...((𝑛 + 1) − 1))∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆)) |
42 | | simprr 527 |
. . . . . . . . . . . . 13
⊢ (((𝑛 ∈ ℕ ∧
∀𝑏 ∈ (1...𝑛)∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆)) ∧ (𝑚 ∈ 𝑌 ∧ (𝑛 + 1) ∥ 𝑚)) → (𝑛 + 1) ∥ 𝑚) |
43 | | peano2nn 8890 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ → (𝑛 + 1) ∈
ℕ) |
44 | 43 | ad2antrr 485 |
. . . . . . . . . . . . 13
⊢ (((𝑛 ∈ ℕ ∧
∀𝑏 ∈ (1...𝑛)∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆)) ∧ (𝑚 ∈ 𝑌 ∧ (𝑛 + 1) ∥ 𝑚)) → (𝑛 + 1) ∈ ℕ) |
45 | | simprl 526 |
. . . . . . . . . . . . 13
⊢ (((𝑛 ∈ ℕ ∧
∀𝑏 ∈ (1...𝑛)∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆)) ∧ (𝑚 ∈ 𝑌 ∧ (𝑛 + 1) ∥ 𝑚)) → 𝑚 ∈ 𝑌) |
46 | 25, 32, 41, 42, 44, 45 | 2sqlem9 13754 |
. . . . . . . . . . . 12
⊢ (((𝑛 ∈ ℕ ∧
∀𝑏 ∈ (1...𝑛)∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆)) ∧ (𝑚 ∈ 𝑌 ∧ (𝑛 + 1) ∥ 𝑚)) → (𝑛 + 1) ∈ 𝑆) |
47 | 46 | expr 373 |
. . . . . . . . . . 11
⊢ (((𝑛 ∈ ℕ ∧
∀𝑏 ∈ (1...𝑛)∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆)) ∧ 𝑚 ∈ 𝑌) → ((𝑛 + 1) ∥ 𝑚 → (𝑛 + 1) ∈ 𝑆)) |
48 | 47 | ralrimiva 2543 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℕ ∧
∀𝑏 ∈ (1...𝑛)∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆)) → ∀𝑚 ∈ 𝑌 ((𝑛 + 1) ∥ 𝑚 → (𝑛 + 1) ∈ 𝑆)) |
49 | 48 | ex 114 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ →
(∀𝑏 ∈
(1...𝑛)∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆) → ∀𝑚 ∈ 𝑌 ((𝑛 + 1) ∥ 𝑚 → (𝑛 + 1) ∈ 𝑆))) |
50 | | breq2 3993 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑚 → ((𝑛 + 1) ∥ 𝑎 ↔ (𝑛 + 1) ∥ 𝑚)) |
51 | 50 | imbi1d 230 |
. . . . . . . . . 10
⊢ (𝑎 = 𝑚 → (((𝑛 + 1) ∥ 𝑎 → (𝑛 + 1) ∈ 𝑆) ↔ ((𝑛 + 1) ∥ 𝑚 → (𝑛 + 1) ∈ 𝑆))) |
52 | 51 | cbvralvw 2700 |
. . . . . . . . 9
⊢
(∀𝑎 ∈
𝑌 ((𝑛 + 1) ∥ 𝑎 → (𝑛 + 1) ∈ 𝑆) ↔ ∀𝑚 ∈ 𝑌 ((𝑛 + 1) ∥ 𝑚 → (𝑛 + 1) ∈ 𝑆)) |
53 | 49, 52 | syl6ibr 161 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ →
(∀𝑏 ∈
(1...𝑛)∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆) → ∀𝑎 ∈ 𝑌 ((𝑛 + 1) ∥ 𝑎 → (𝑛 + 1) ∈ 𝑆))) |
54 | | breq1 3992 |
. . . . . . . . . . . 12
⊢ (𝑏 = (𝑛 + 1) → (𝑏 ∥ 𝑎 ↔ (𝑛 + 1) ∥ 𝑎)) |
55 | | eleq1 2233 |
. . . . . . . . . . . 12
⊢ (𝑏 = (𝑛 + 1) → (𝑏 ∈ 𝑆 ↔ (𝑛 + 1) ∈ 𝑆)) |
56 | 54, 55 | imbi12d 233 |
. . . . . . . . . . 11
⊢ (𝑏 = (𝑛 + 1) → ((𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆) ↔ ((𝑛 + 1) ∥ 𝑎 → (𝑛 + 1) ∈ 𝑆))) |
57 | 56 | ralbidv 2470 |
. . . . . . . . . 10
⊢ (𝑏 = (𝑛 + 1) → (∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆) ↔ ∀𝑎 ∈ 𝑌 ((𝑛 + 1) ∥ 𝑎 → (𝑛 + 1) ∈ 𝑆))) |
58 | 57 | ralsng 3623 |
. . . . . . . . 9
⊢ ((𝑛 + 1) ∈ ℕ →
(∀𝑏 ∈ {(𝑛 + 1)}∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆) ↔ ∀𝑎 ∈ 𝑌 ((𝑛 + 1) ∥ 𝑎 → (𝑛 + 1) ∈ 𝑆))) |
59 | 43, 58 | syl 14 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ →
(∀𝑏 ∈ {(𝑛 + 1)}∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆) ↔ ∀𝑎 ∈ 𝑌 ((𝑛 + 1) ∥ 𝑎 → (𝑛 + 1) ∈ 𝑆))) |
60 | 53, 59 | sylibrd 168 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ →
(∀𝑏 ∈
(1...𝑛)∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆) → ∀𝑏 ∈ {(𝑛 + 1)}∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆))) |
61 | 60 | ancld 323 |
. . . . . 6
⊢ (𝑛 ∈ ℕ →
(∀𝑏 ∈
(1...𝑛)∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆) → (∀𝑏 ∈ (1...𝑛)∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆) ∧ ∀𝑏 ∈ {(𝑛 + 1)}∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆)))) |
62 | | elnnuz 9523 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ ↔ 𝑛 ∈
(ℤ≥‘1)) |
63 | | fzsuc 10025 |
. . . . . . . . 9
⊢ (𝑛 ∈
(ℤ≥‘1) → (1...(𝑛 + 1)) = ((1...𝑛) ∪ {(𝑛 + 1)})) |
64 | 62, 63 | sylbi 120 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ →
(1...(𝑛 + 1)) = ((1...𝑛) ∪ {(𝑛 + 1)})) |
65 | 64 | raleqdv 2671 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ →
(∀𝑏 ∈
(1...(𝑛 + 1))∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆) ↔ ∀𝑏 ∈ ((1...𝑛) ∪ {(𝑛 + 1)})∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆))) |
66 | | ralunb 3308 |
. . . . . . 7
⊢
(∀𝑏 ∈
((1...𝑛) ∪ {(𝑛 + 1)})∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆) ↔ (∀𝑏 ∈ (1...𝑛)∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆) ∧ ∀𝑏 ∈ {(𝑛 + 1)}∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆))) |
67 | 65, 66 | bitrdi 195 |
. . . . . 6
⊢ (𝑛 ∈ ℕ →
(∀𝑏 ∈
(1...(𝑛 + 1))∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆) ↔ (∀𝑏 ∈ (1...𝑛)∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆) ∧ ∀𝑏 ∈ {(𝑛 + 1)}∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆)))) |
68 | 61, 67 | sylibrd 168 |
. . . . 5
⊢ (𝑛 ∈ ℕ →
(∀𝑏 ∈
(1...𝑛)∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆) → ∀𝑏 ∈ (1...(𝑛 + 1))∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆))) |
69 | 6, 8, 10, 12, 31, 68 | nnind 8894 |
. . . 4
⊢ (𝐵 ∈ ℕ →
∀𝑏 ∈ (1...𝐵)∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆)) |
70 | | elfz1end 10011 |
. . . . 5
⊢ (𝐵 ∈ ℕ ↔ 𝐵 ∈ (1...𝐵)) |
71 | 70 | biimpi 119 |
. . . 4
⊢ (𝐵 ∈ ℕ → 𝐵 ∈ (1...𝐵)) |
72 | 4, 69, 71 | rspcdva 2839 |
. . 3
⊢ (𝐵 ∈ ℕ →
∀𝑎 ∈ 𝑌 (𝐵 ∥ 𝑎 → 𝐵 ∈ 𝑆)) |
73 | | breq2 3993 |
. . . . 5
⊢ (𝑎 = 𝐴 → (𝐵 ∥ 𝑎 ↔ 𝐵 ∥ 𝐴)) |
74 | 73 | imbi1d 230 |
. . . 4
⊢ (𝑎 = 𝐴 → ((𝐵 ∥ 𝑎 → 𝐵 ∈ 𝑆) ↔ (𝐵 ∥ 𝐴 → 𝐵 ∈ 𝑆))) |
75 | 74 | rspcv 2830 |
. . 3
⊢ (𝐴 ∈ 𝑌 → (∀𝑎 ∈ 𝑌 (𝐵 ∥ 𝑎 → 𝐵 ∈ 𝑆) → (𝐵 ∥ 𝐴 → 𝐵 ∈ 𝑆))) |
76 | 72, 75 | syl5 32 |
. 2
⊢ (𝐴 ∈ 𝑌 → (𝐵 ∈ ℕ → (𝐵 ∥ 𝐴 → 𝐵 ∈ 𝑆))) |
77 | 76 | 3imp 1188 |
1
⊢ ((𝐴 ∈ 𝑌 ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐴) → 𝐵 ∈ 𝑆) |