ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relssres GIF version

Theorem relssres 4825
Description: Simplification law for restriction. (Contributed by NM, 16-Aug-1994.)
Assertion
Ref Expression
relssres ((Rel 𝐴 ∧ dom 𝐴𝐵) → (𝐴𝐵) = 𝐴)

Proof of Theorem relssres
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 108 . . . 4 ((Rel 𝐴 ∧ dom 𝐴𝐵) → Rel 𝐴)
2 vex 2661 . . . . . . . . 9 𝑥 ∈ V
3 vex 2661 . . . . . . . . 9 𝑦 ∈ V
42, 3opeldm 4710 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ 𝐴𝑥 ∈ dom 𝐴)
5 ssel 3059 . . . . . . . 8 (dom 𝐴𝐵 → (𝑥 ∈ dom 𝐴𝑥𝐵))
64, 5syl5 32 . . . . . . 7 (dom 𝐴𝐵 → (⟨𝑥, 𝑦⟩ ∈ 𝐴𝑥𝐵))
76ancld 321 . . . . . 6 (dom 𝐴𝐵 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 → (⟨𝑥, 𝑦⟩ ∈ 𝐴𝑥𝐵)))
83opelres 4792 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ (𝐴𝐵) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐴𝑥𝐵))
97, 8syl6ibr 161 . . . . 5 (dom 𝐴𝐵 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ (𝐴𝐵)))
109adantl 273 . . . 4 ((Rel 𝐴 ∧ dom 𝐴𝐵) → (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ (𝐴𝐵)))
111, 10relssdv 4599 . . 3 ((Rel 𝐴 ∧ dom 𝐴𝐵) → 𝐴 ⊆ (𝐴𝐵))
12 resss 4811 . . 3 (𝐴𝐵) ⊆ 𝐴
1311, 12jctil 308 . 2 ((Rel 𝐴 ∧ dom 𝐴𝐵) → ((𝐴𝐵) ⊆ 𝐴𝐴 ⊆ (𝐴𝐵)))
14 eqss 3080 . 2 ((𝐴𝐵) = 𝐴 ↔ ((𝐴𝐵) ⊆ 𝐴𝐴 ⊆ (𝐴𝐵)))
1513, 14sylibr 133 1 ((Rel 𝐴 ∧ dom 𝐴𝐵) → (𝐴𝐵) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1314  wcel 1463  wss 3039  cop 3498  dom cdm 4507  cres 4509  Rel wrel 4512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ral 2396  df-rex 2397  df-v 2660  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-br 3898  df-opab 3958  df-xp 4513  df-rel 4514  df-dm 4517  df-res 4519
This theorem is referenced by:  resdm  4826  resid  4843  fnresdm  5200  f1ompt  5537  setscom  11894  setsslid  11904
  Copyright terms: Public domain W3C validator