![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > relssres | GIF version |
Description: Simplification law for restriction. (Contributed by NM, 16-Aug-1994.) |
Ref | Expression |
---|---|
relssres | ⊢ ((Rel 𝐴 ∧ dom 𝐴 ⊆ 𝐵) → (𝐴 ↾ 𝐵) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 109 | . . . 4 ⊢ ((Rel 𝐴 ∧ dom 𝐴 ⊆ 𝐵) → Rel 𝐴) | |
2 | vex 2763 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
3 | vex 2763 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
4 | 2, 3 | opeldm 4865 | . . . . . . . 8 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑥 ∈ dom 𝐴) |
5 | ssel 3173 | . . . . . . . 8 ⊢ (dom 𝐴 ⊆ 𝐵 → (𝑥 ∈ dom 𝐴 → 𝑥 ∈ 𝐵)) | |
6 | 4, 5 | syl5 32 | . . . . . . 7 ⊢ (dom 𝐴 ⊆ 𝐵 → (〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
7 | 6 | ancld 325 | . . . . . 6 ⊢ (dom 𝐴 ⊆ 𝐵 → (〈𝑥, 𝑦〉 ∈ 𝐴 → (〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵))) |
8 | 3 | opelres 4947 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵) ↔ (〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) |
9 | 7, 8 | imbitrrdi 162 | . . . . 5 ⊢ (dom 𝐴 ⊆ 𝐵 → (〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵))) |
10 | 9 | adantl 277 | . . . 4 ⊢ ((Rel 𝐴 ∧ dom 𝐴 ⊆ 𝐵) → (〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵))) |
11 | 1, 10 | relssdv 4751 | . . 3 ⊢ ((Rel 𝐴 ∧ dom 𝐴 ⊆ 𝐵) → 𝐴 ⊆ (𝐴 ↾ 𝐵)) |
12 | resss 4966 | . . 3 ⊢ (𝐴 ↾ 𝐵) ⊆ 𝐴 | |
13 | 11, 12 | jctil 312 | . 2 ⊢ ((Rel 𝐴 ∧ dom 𝐴 ⊆ 𝐵) → ((𝐴 ↾ 𝐵) ⊆ 𝐴 ∧ 𝐴 ⊆ (𝐴 ↾ 𝐵))) |
14 | eqss 3194 | . 2 ⊢ ((𝐴 ↾ 𝐵) = 𝐴 ↔ ((𝐴 ↾ 𝐵) ⊆ 𝐴 ∧ 𝐴 ⊆ (𝐴 ↾ 𝐵))) | |
15 | 13, 14 | sylibr 134 | 1 ⊢ ((Rel 𝐴 ∧ dom 𝐴 ⊆ 𝐵) → (𝐴 ↾ 𝐵) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ⊆ wss 3153 〈cop 3621 dom cdm 4659 ↾ cres 4661 Rel wrel 4664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 df-opab 4091 df-xp 4665 df-rel 4666 df-dm 4669 df-res 4671 |
This theorem is referenced by: resdm 4981 resid 4999 fnresdm 5363 f1ompt 5709 setscom 12658 setsslid 12669 |
Copyright terms: Public domain | W3C validator |