Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdunexb GIF version

Theorem bdunexb 14241
Description: Bounded version of unexb 4436. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bdunex.bd1 BOUNDED 𝐴
bdunex.bd2 BOUNDED 𝐵
Assertion
Ref Expression
bdunexb ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴𝐵) ∈ V)

Proof of Theorem bdunexb
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uneq1 3280 . . . 4 (𝑥 = 𝐴 → (𝑥𝑦) = (𝐴𝑦))
21eleq1d 2244 . . 3 (𝑥 = 𝐴 → ((𝑥𝑦) ∈ V ↔ (𝐴𝑦) ∈ V))
3 uneq2 3281 . . . 4 (𝑦 = 𝐵 → (𝐴𝑦) = (𝐴𝐵))
43eleq1d 2244 . . 3 (𝑦 = 𝐵 → ((𝐴𝑦) ∈ V ↔ (𝐴𝐵) ∈ V))
5 vex 2738 . . . 4 𝑥 ∈ V
6 vex 2738 . . . 4 𝑦 ∈ V
75, 6bj-unex 14240 . . 3 (𝑥𝑦) ∈ V
82, 4, 7vtocl2g 2799 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐵) ∈ V)
9 ssun1 3296 . . . 4 𝐴 ⊆ (𝐴𝐵)
10 bdunex.bd1 . . . . 5 BOUNDED 𝐴
1110bdssexg 14225 . . . 4 ((𝐴 ⊆ (𝐴𝐵) ∧ (𝐴𝐵) ∈ V) → 𝐴 ∈ V)
129, 11mpan 424 . . 3 ((𝐴𝐵) ∈ V → 𝐴 ∈ V)
13 ssun2 3297 . . . 4 𝐵 ⊆ (𝐴𝐵)
14 bdunex.bd2 . . . . 5 BOUNDED 𝐵
1514bdssexg 14225 . . . 4 ((𝐵 ⊆ (𝐴𝐵) ∧ (𝐴𝐵) ∈ V) → 𝐵 ∈ V)
1613, 15mpan 424 . . 3 ((𝐴𝐵) ∈ V → 𝐵 ∈ V)
1712, 16jca 306 . 2 ((𝐴𝐵) ∈ V → (𝐴 ∈ V ∧ 𝐵 ∈ V))
188, 17impbii 126 1 ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴𝐵) ∈ V)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1353  wcel 2146  Vcvv 2735  cun 3125  wss 3127  BOUNDED wbdc 14161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-pr 4203  ax-un 4427  ax-bd0 14134  ax-bdor 14137  ax-bdex 14140  ax-bdeq 14141  ax-bdel 14142  ax-bdsb 14143  ax-bdsep 14205
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-rex 2459  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-sn 3595  df-pr 3596  df-uni 3806  df-bdc 14162
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator