| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bdunexb | GIF version | ||
| Description: Bounded version of unexb 4487. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bdunex.bd1 | ⊢ BOUNDED 𝐴 |
| bdunex.bd2 | ⊢ BOUNDED 𝐵 |
| Ref | Expression |
|---|---|
| bdunexb | ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴 ∪ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1 3319 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∪ 𝑦) = (𝐴 ∪ 𝑦)) | |
| 2 | 1 | eleq1d 2273 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 ∪ 𝑦) ∈ V ↔ (𝐴 ∪ 𝑦) ∈ V)) |
| 3 | uneq2 3320 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝐴 ∪ 𝑦) = (𝐴 ∪ 𝐵)) | |
| 4 | 3 | eleq1d 2273 | . . 3 ⊢ (𝑦 = 𝐵 → ((𝐴 ∪ 𝑦) ∈ V ↔ (𝐴 ∪ 𝐵) ∈ V)) |
| 5 | vex 2774 | . . . 4 ⊢ 𝑥 ∈ V | |
| 6 | vex 2774 | . . . 4 ⊢ 𝑦 ∈ V | |
| 7 | 5, 6 | bj-unex 15719 | . . 3 ⊢ (𝑥 ∪ 𝑦) ∈ V |
| 8 | 2, 4, 7 | vtocl2g 2836 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ∪ 𝐵) ∈ V) |
| 9 | ssun1 3335 | . . . 4 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) | |
| 10 | bdunex.bd1 | . . . . 5 ⊢ BOUNDED 𝐴 | |
| 11 | 10 | bdssexg 15704 | . . . 4 ⊢ ((𝐴 ⊆ (𝐴 ∪ 𝐵) ∧ (𝐴 ∪ 𝐵) ∈ V) → 𝐴 ∈ V) |
| 12 | 9, 11 | mpan 424 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ∈ V → 𝐴 ∈ V) |
| 13 | ssun2 3336 | . . . 4 ⊢ 𝐵 ⊆ (𝐴 ∪ 𝐵) | |
| 14 | bdunex.bd2 | . . . . 5 ⊢ BOUNDED 𝐵 | |
| 15 | 14 | bdssexg 15704 | . . . 4 ⊢ ((𝐵 ⊆ (𝐴 ∪ 𝐵) ∧ (𝐴 ∪ 𝐵) ∈ V) → 𝐵 ∈ V) |
| 16 | 13, 15 | mpan 424 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ∈ V → 𝐵 ∈ V) |
| 17 | 12, 16 | jca 306 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∈ V → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 18 | 8, 17 | impbii 126 | 1 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴 ∪ 𝐵) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1372 ∈ wcel 2175 Vcvv 2771 ∪ cun 3163 ⊆ wss 3165 BOUNDED wbdc 15640 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-pr 4252 ax-un 4478 ax-bd0 15613 ax-bdor 15616 ax-bdex 15619 ax-bdeq 15620 ax-bdel 15621 ax-bdsb 15622 ax-bdsep 15684 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-sn 3638 df-pr 3639 df-uni 3850 df-bdc 15641 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |