| Mathbox for BJ | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bdunexb | GIF version | ||
| Description: Bounded version of unexb 4477. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) | 
| Ref | Expression | 
|---|---|
| bdunex.bd1 | ⊢ BOUNDED 𝐴 | 
| bdunex.bd2 | ⊢ BOUNDED 𝐵 | 
| Ref | Expression | 
|---|---|
| bdunexb | ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴 ∪ 𝐵) ∈ V) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | uneq1 3310 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∪ 𝑦) = (𝐴 ∪ 𝑦)) | |
| 2 | 1 | eleq1d 2265 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 ∪ 𝑦) ∈ V ↔ (𝐴 ∪ 𝑦) ∈ V)) | 
| 3 | uneq2 3311 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝐴 ∪ 𝑦) = (𝐴 ∪ 𝐵)) | |
| 4 | 3 | eleq1d 2265 | . . 3 ⊢ (𝑦 = 𝐵 → ((𝐴 ∪ 𝑦) ∈ V ↔ (𝐴 ∪ 𝐵) ∈ V)) | 
| 5 | vex 2766 | . . . 4 ⊢ 𝑥 ∈ V | |
| 6 | vex 2766 | . . . 4 ⊢ 𝑦 ∈ V | |
| 7 | 5, 6 | bj-unex 15565 | . . 3 ⊢ (𝑥 ∪ 𝑦) ∈ V | 
| 8 | 2, 4, 7 | vtocl2g 2828 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ∪ 𝐵) ∈ V) | 
| 9 | ssun1 3326 | . . . 4 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) | |
| 10 | bdunex.bd1 | . . . . 5 ⊢ BOUNDED 𝐴 | |
| 11 | 10 | bdssexg 15550 | . . . 4 ⊢ ((𝐴 ⊆ (𝐴 ∪ 𝐵) ∧ (𝐴 ∪ 𝐵) ∈ V) → 𝐴 ∈ V) | 
| 12 | 9, 11 | mpan 424 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ∈ V → 𝐴 ∈ V) | 
| 13 | ssun2 3327 | . . . 4 ⊢ 𝐵 ⊆ (𝐴 ∪ 𝐵) | |
| 14 | bdunex.bd2 | . . . . 5 ⊢ BOUNDED 𝐵 | |
| 15 | 14 | bdssexg 15550 | . . . 4 ⊢ ((𝐵 ⊆ (𝐴 ∪ 𝐵) ∧ (𝐴 ∪ 𝐵) ∈ V) → 𝐵 ∈ V) | 
| 16 | 13, 15 | mpan 424 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ∈ V → 𝐵 ∈ V) | 
| 17 | 12, 16 | jca 306 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∈ V → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | 
| 18 | 8, 17 | impbii 126 | 1 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴 ∪ 𝐵) ∈ V) | 
| Colors of variables: wff set class | 
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ∪ cun 3155 ⊆ wss 3157 BOUNDED wbdc 15486 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-pr 4242 ax-un 4468 ax-bd0 15459 ax-bdor 15462 ax-bdex 15465 ax-bdeq 15466 ax-bdel 15467 ax-bdsb 15468 ax-bdsep 15530 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-uni 3840 df-bdc 15487 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |