Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdunexb GIF version

Theorem bdunexb 16241
Description: Bounded version of unexb 4532. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bdunex.bd1 BOUNDED 𝐴
bdunex.bd2 BOUNDED 𝐵
Assertion
Ref Expression
bdunexb ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴𝐵) ∈ V)

Proof of Theorem bdunexb
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uneq1 3351 . . . 4 (𝑥 = 𝐴 → (𝑥𝑦) = (𝐴𝑦))
21eleq1d 2298 . . 3 (𝑥 = 𝐴 → ((𝑥𝑦) ∈ V ↔ (𝐴𝑦) ∈ V))
3 uneq2 3352 . . . 4 (𝑦 = 𝐵 → (𝐴𝑦) = (𝐴𝐵))
43eleq1d 2298 . . 3 (𝑦 = 𝐵 → ((𝐴𝑦) ∈ V ↔ (𝐴𝐵) ∈ V))
5 vex 2802 . . . 4 𝑥 ∈ V
6 vex 2802 . . . 4 𝑦 ∈ V
75, 6bj-unex 16240 . . 3 (𝑥𝑦) ∈ V
82, 4, 7vtocl2g 2865 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐵) ∈ V)
9 ssun1 3367 . . . 4 𝐴 ⊆ (𝐴𝐵)
10 bdunex.bd1 . . . . 5 BOUNDED 𝐴
1110bdssexg 16225 . . . 4 ((𝐴 ⊆ (𝐴𝐵) ∧ (𝐴𝐵) ∈ V) → 𝐴 ∈ V)
129, 11mpan 424 . . 3 ((𝐴𝐵) ∈ V → 𝐴 ∈ V)
13 ssun2 3368 . . . 4 𝐵 ⊆ (𝐴𝐵)
14 bdunex.bd2 . . . . 5 BOUNDED 𝐵
1514bdssexg 16225 . . . 4 ((𝐵 ⊆ (𝐴𝐵) ∧ (𝐴𝐵) ∈ V) → 𝐵 ∈ V)
1613, 15mpan 424 . . 3 ((𝐴𝐵) ∈ V → 𝐵 ∈ V)
1712, 16jca 306 . 2 ((𝐴𝐵) ∈ V → (𝐴 ∈ V ∧ 𝐵 ∈ V))
188, 17impbii 126 1 ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴𝐵) ∈ V)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1395  wcel 2200  Vcvv 2799  cun 3195  wss 3197  BOUNDED wbdc 16161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-pr 4292  ax-un 4523  ax-bd0 16134  ax-bdor 16137  ax-bdex 16140  ax-bdeq 16141  ax-bdel 16142  ax-bdsb 16143  ax-bdsep 16205
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-uni 3888  df-bdc 16162
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator