Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdunexb GIF version

Theorem bdunexb 15566
Description: Bounded version of unexb 4477. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bdunex.bd1 BOUNDED 𝐴
bdunex.bd2 BOUNDED 𝐵
Assertion
Ref Expression
bdunexb ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴𝐵) ∈ V)

Proof of Theorem bdunexb
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uneq1 3310 . . . 4 (𝑥 = 𝐴 → (𝑥𝑦) = (𝐴𝑦))
21eleq1d 2265 . . 3 (𝑥 = 𝐴 → ((𝑥𝑦) ∈ V ↔ (𝐴𝑦) ∈ V))
3 uneq2 3311 . . . 4 (𝑦 = 𝐵 → (𝐴𝑦) = (𝐴𝐵))
43eleq1d 2265 . . 3 (𝑦 = 𝐵 → ((𝐴𝑦) ∈ V ↔ (𝐴𝐵) ∈ V))
5 vex 2766 . . . 4 𝑥 ∈ V
6 vex 2766 . . . 4 𝑦 ∈ V
75, 6bj-unex 15565 . . 3 (𝑥𝑦) ∈ V
82, 4, 7vtocl2g 2828 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐵) ∈ V)
9 ssun1 3326 . . . 4 𝐴 ⊆ (𝐴𝐵)
10 bdunex.bd1 . . . . 5 BOUNDED 𝐴
1110bdssexg 15550 . . . 4 ((𝐴 ⊆ (𝐴𝐵) ∧ (𝐴𝐵) ∈ V) → 𝐴 ∈ V)
129, 11mpan 424 . . 3 ((𝐴𝐵) ∈ V → 𝐴 ∈ V)
13 ssun2 3327 . . . 4 𝐵 ⊆ (𝐴𝐵)
14 bdunex.bd2 . . . . 5 BOUNDED 𝐵
1514bdssexg 15550 . . . 4 ((𝐵 ⊆ (𝐴𝐵) ∧ (𝐴𝐵) ∈ V) → 𝐵 ∈ V)
1613, 15mpan 424 . . 3 ((𝐴𝐵) ∈ V → 𝐵 ∈ V)
1712, 16jca 306 . 2 ((𝐴𝐵) ∈ V → (𝐴 ∈ V ∧ 𝐵 ∈ V))
188, 17impbii 126 1 ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴𝐵) ∈ V)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1364  wcel 2167  Vcvv 2763  cun 3155  wss 3157  BOUNDED wbdc 15486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-pr 4242  ax-un 4468  ax-bd0 15459  ax-bdor 15462  ax-bdex 15465  ax-bdeq 15466  ax-bdel 15467  ax-bdsb 15468  ax-bdsep 15530
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3628  df-pr 3629  df-uni 3840  df-bdc 15487
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator