ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulap0r GIF version

Theorem mulap0r 8504
Description: A product apart from zero. Lemma 2.13 of [Geuvers], p. 6. (Contributed by Jim Kingdon, 24-Feb-2020.)
Assertion
Ref Expression
mulap0r ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 · 𝐵) # 0) → (𝐴 # 0 ∧ 𝐵 # 0))

Proof of Theorem mulap0r
StepHypRef Expression
1 simp3 988 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 · 𝐵) # 0) → (𝐴 · 𝐵) # 0)
2 simp2 987 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 · 𝐵) # 0) → 𝐵 ∈ ℂ)
32mul02d 8281 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 · 𝐵) # 0) → (0 · 𝐵) = 0)
41, 3breqtrrd 4004 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 · 𝐵) # 0) → (𝐴 · 𝐵) # (0 · 𝐵))
5 simp1 986 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 · 𝐵) # 0) → 𝐴 ∈ ℂ)
6 0cnd 7883 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 · 𝐵) # 0) → 0 ∈ ℂ)
7 mulext 8503 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (0 ∈ ℂ ∧ 𝐵 ∈ ℂ)) → ((𝐴 · 𝐵) # (0 · 𝐵) → (𝐴 # 0 ∨ 𝐵 # 𝐵)))
85, 2, 6, 2, 7syl22anc 1228 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 · 𝐵) # 0) → ((𝐴 · 𝐵) # (0 · 𝐵) → (𝐴 # 0 ∨ 𝐵 # 𝐵)))
94, 8mpd 13 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 · 𝐵) # 0) → (𝐴 # 0 ∨ 𝐵 # 𝐵))
109orcomd 719 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 · 𝐵) # 0) → (𝐵 # 𝐵𝐴 # 0))
11 apirr 8494 . . . 4 (𝐵 ∈ ℂ → ¬ 𝐵 # 𝐵)
12 biorf 734 . . . 4 𝐵 # 𝐵 → (𝐴 # 0 ↔ (𝐵 # 𝐵𝐴 # 0)))
132, 11, 123syl 17 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 · 𝐵) # 0) → (𝐴 # 0 ↔ (𝐵 # 𝐵𝐴 # 0)))
1410, 13mpbird 166 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 · 𝐵) # 0) → 𝐴 # 0)
155mul01d 8282 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 · 𝐵) # 0) → (𝐴 · 0) = 0)
161, 15breqtrrd 4004 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 · 𝐵) # 0) → (𝐴 · 𝐵) # (𝐴 · 0))
17 mulext 8503 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ∈ ℂ ∧ 0 ∈ ℂ)) → ((𝐴 · 𝐵) # (𝐴 · 0) → (𝐴 # 𝐴𝐵 # 0)))
185, 2, 5, 6, 17syl22anc 1228 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 · 𝐵) # 0) → ((𝐴 · 𝐵) # (𝐴 · 0) → (𝐴 # 𝐴𝐵 # 0)))
1916, 18mpd 13 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 · 𝐵) # 0) → (𝐴 # 𝐴𝐵 # 0))
20 apirr 8494 . . . 4 (𝐴 ∈ ℂ → ¬ 𝐴 # 𝐴)
21 biorf 734 . . . 4 𝐴 # 𝐴 → (𝐵 # 0 ↔ (𝐴 # 𝐴𝐵 # 0)))
225, 20, 213syl 17 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 · 𝐵) # 0) → (𝐵 # 0 ↔ (𝐴 # 𝐴𝐵 # 0)))
2319, 22mpbird 166 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 · 𝐵) # 0) → 𝐵 # 0)
2414, 23jca 304 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 · 𝐵) # 0) → (𝐴 # 0 ∧ 𝐵 # 0))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698  w3a 967  wcel 2135   class class class wbr 3976  (class class class)co 5836  cc 7742  0cc0 7744   · cmul 7749   # cap 8470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-mulrcl 7843  ax-addcom 7844  ax-mulcom 7845  ax-addass 7846  ax-mulass 7847  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-1rid 7851  ax-0id 7852  ax-rnegex 7853  ax-precex 7854  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-apti 7859  ax-pre-ltadd 7860  ax-pre-mulgt0 7861  ax-pre-mulext 7862
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2723  df-sbc 2947  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-br 3977  df-opab 4038  df-id 4265  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-iota 5147  df-fun 5184  df-fv 5190  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-pnf 7926  df-mnf 7927  df-ltxr 7929  df-sub 8062  df-neg 8063  df-reap 8464  df-ap 8471
This theorem is referenced by:  msqge0  8505  mulge0  8508  mulap0b  8543
  Copyright terms: Public domain W3C validator