| Step | Hyp | Ref
 | Expression | 
| 1 |   | simpr2 1006 | 
. . . . . 6
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ* ∧ 𝑆 ≤ 𝑅)) → 𝑆 ∈
ℝ*) | 
| 2 | 1 | adantr 276 | 
. . . . 5
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ* ∧ 𝑆 ≤ 𝑅)) ∧ 𝑧 ∈ 𝑋) → 𝑆 ∈
ℝ*) | 
| 3 |   | simpl1 1002 | 
. . . . . . 7
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ* ∧ 𝑆 ≤ 𝑅)) → 𝐶 ∈ (∞Met‘𝑋)) | 
| 4 | 3 | adantr 276 | 
. . . . . 6
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ* ∧ 𝑆 ≤ 𝑅)) ∧ 𝑧 ∈ 𝑋) → 𝐶 ∈ (∞Met‘𝑋)) | 
| 5 |   | simpr1 1005 | 
. . . . . . 7
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ* ∧ 𝑆 ≤ 𝑅)) → 𝑃 ∈ 𝑋) | 
| 6 | 5 | adantr 276 | 
. . . . . 6
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ* ∧ 𝑆 ≤ 𝑅)) ∧ 𝑧 ∈ 𝑋) → 𝑃 ∈ 𝑋) | 
| 7 |   | simpr 110 | 
. . . . . 6
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ* ∧ 𝑆 ≤ 𝑅)) ∧ 𝑧 ∈ 𝑋) → 𝑧 ∈ 𝑋) | 
| 8 |   | xmetcl 14588 | 
. . . . . 6
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → (𝑃𝐶𝑧) ∈
ℝ*) | 
| 9 | 4, 6, 7, 8 | syl3anc 1249 | 
. . . . 5
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ* ∧ 𝑆 ≤ 𝑅)) ∧ 𝑧 ∈ 𝑋) → (𝑃𝐶𝑧) ∈
ℝ*) | 
| 10 |   | simpll2 1039 | 
. . . . 5
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ* ∧ 𝑆 ≤ 𝑅)) ∧ 𝑧 ∈ 𝑋) → 𝑅 ∈
ℝ*) | 
| 11 |   | xrminltinf 11437 | 
. . . . 5
⊢ ((𝑆 ∈ ℝ*
∧ (𝑃𝐶𝑧) ∈ ℝ* ∧ 𝑅 ∈ ℝ*)
→ (inf({(𝑃𝐶𝑧), 𝑅}, ℝ*, < ) < 𝑆 ↔ ((𝑃𝐶𝑧) < 𝑆 ∨ 𝑅 < 𝑆))) | 
| 12 | 2, 9, 10, 11 | syl3anc 1249 | 
. . . 4
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ* ∧ 𝑆 ≤ 𝑅)) ∧ 𝑧 ∈ 𝑋) → (inf({(𝑃𝐶𝑧), 𝑅}, ℝ*, < ) < 𝑆 ↔ ((𝑃𝐶𝑧) < 𝑆 ∨ 𝑅 < 𝑆))) | 
| 13 |   | xmetf 14586 | 
. . . . . . . . 9
⊢ (𝐶 ∈ (∞Met‘𝑋) → 𝐶:(𝑋 × 𝑋)⟶ℝ*) | 
| 14 | 13 | 3ad2ant1 1020 | 
. . . . . . . 8
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) → 𝐶:(𝑋 × 𝑋)⟶ℝ*) | 
| 15 | 14 | adantr 276 | 
. . . . . . 7
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ* ∧ 𝑆 ≤ 𝑅)) → 𝐶:(𝑋 × 𝑋)⟶ℝ*) | 
| 16 | 15 | adantr 276 | 
. . . . . 6
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ* ∧ 𝑆 ≤ 𝑅)) ∧ 𝑧 ∈ 𝑋) → 𝐶:(𝑋 × 𝑋)⟶ℝ*) | 
| 17 |   | stdbdmet.1 | 
. . . . . . 7
⊢ 𝐷 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, <
)) | 
| 18 | 17 | bdmetval 14736 | 
. . . . . 6
⊢ (((𝐶:(𝑋 × 𝑋)⟶ℝ* ∧ 𝑅 ∈ ℝ*)
∧ (𝑃 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑃𝐷𝑧) = inf({(𝑃𝐶𝑧), 𝑅}, ℝ*, <
)) | 
| 19 | 16, 10, 6, 7, 18 | syl22anc 1250 | 
. . . . 5
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ* ∧ 𝑆 ≤ 𝑅)) ∧ 𝑧 ∈ 𝑋) → (𝑃𝐷𝑧) = inf({(𝑃𝐶𝑧), 𝑅}, ℝ*, <
)) | 
| 20 | 19 | breq1d 4043 | 
. . . 4
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ* ∧ 𝑆 ≤ 𝑅)) ∧ 𝑧 ∈ 𝑋) → ((𝑃𝐷𝑧) < 𝑆 ↔ inf({(𝑃𝐶𝑧), 𝑅}, ℝ*, < ) < 𝑆)) | 
| 21 |   | simpr3 1007 | 
. . . . . . . 8
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ* ∧ 𝑆 ≤ 𝑅)) → 𝑆 ≤ 𝑅) | 
| 22 |   | simpl2 1003 | 
. . . . . . . . 9
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ* ∧ 𝑆 ≤ 𝑅)) → 𝑅 ∈
ℝ*) | 
| 23 |   | xrlenlt 8091 | 
. . . . . . . . 9
⊢ ((𝑆 ∈ ℝ*
∧ 𝑅 ∈
ℝ*) → (𝑆 ≤ 𝑅 ↔ ¬ 𝑅 < 𝑆)) | 
| 24 | 1, 22, 23 | syl2anc 411 | 
. . . . . . . 8
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ* ∧ 𝑆 ≤ 𝑅)) → (𝑆 ≤ 𝑅 ↔ ¬ 𝑅 < 𝑆)) | 
| 25 | 21, 24 | mpbid 147 | 
. . . . . . 7
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ* ∧ 𝑆 ≤ 𝑅)) → ¬ 𝑅 < 𝑆) | 
| 26 |   | biorf 745 | 
. . . . . . 7
⊢ (¬
𝑅 < 𝑆 → ((𝑃𝐶𝑧) < 𝑆 ↔ (𝑅 < 𝑆 ∨ (𝑃𝐶𝑧) < 𝑆))) | 
| 27 | 25, 26 | syl 14 | 
. . . . . 6
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ* ∧ 𝑆 ≤ 𝑅)) → ((𝑃𝐶𝑧) < 𝑆 ↔ (𝑅 < 𝑆 ∨ (𝑃𝐶𝑧) < 𝑆))) | 
| 28 |   | orcom 729 | 
. . . . . 6
⊢ ((𝑅 < 𝑆 ∨ (𝑃𝐶𝑧) < 𝑆) ↔ ((𝑃𝐶𝑧) < 𝑆 ∨ 𝑅 < 𝑆)) | 
| 29 | 27, 28 | bitrdi 196 | 
. . . . 5
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ* ∧ 𝑆 ≤ 𝑅)) → ((𝑃𝐶𝑧) < 𝑆 ↔ ((𝑃𝐶𝑧) < 𝑆 ∨ 𝑅 < 𝑆))) | 
| 30 | 29 | adantr 276 | 
. . . 4
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ* ∧ 𝑆 ≤ 𝑅)) ∧ 𝑧 ∈ 𝑋) → ((𝑃𝐶𝑧) < 𝑆 ↔ ((𝑃𝐶𝑧) < 𝑆 ∨ 𝑅 < 𝑆))) | 
| 31 | 12, 20, 30 | 3bitr4d 220 | 
. . 3
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ* ∧ 𝑆 ≤ 𝑅)) ∧ 𝑧 ∈ 𝑋) → ((𝑃𝐷𝑧) < 𝑆 ↔ (𝑃𝐶𝑧) < 𝑆)) | 
| 32 | 31 | rabbidva 2751 | 
. 2
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ* ∧ 𝑆 ≤ 𝑅)) → {𝑧 ∈ 𝑋 ∣ (𝑃𝐷𝑧) < 𝑆} = {𝑧 ∈ 𝑋 ∣ (𝑃𝐶𝑧) < 𝑆}) | 
| 33 | 17 | bdxmet 14737 | 
. . . 4
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) → 𝐷 ∈ (∞Met‘𝑋)) | 
| 34 | 33 | adantr 276 | 
. . 3
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ* ∧ 𝑆 ≤ 𝑅)) → 𝐷 ∈ (∞Met‘𝑋)) | 
| 35 |   | blval 14625 | 
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑆) = {𝑧 ∈ 𝑋 ∣ (𝑃𝐷𝑧) < 𝑆}) | 
| 36 | 34, 5, 1, 35 | syl3anc 1249 | 
. 2
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ* ∧ 𝑆 ≤ 𝑅)) → (𝑃(ball‘𝐷)𝑆) = {𝑧 ∈ 𝑋 ∣ (𝑃𝐷𝑧) < 𝑆}) | 
| 37 |   | blval 14625 | 
. . 3
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ*) → (𝑃(ball‘𝐶)𝑆) = {𝑧 ∈ 𝑋 ∣ (𝑃𝐶𝑧) < 𝑆}) | 
| 38 | 3, 5, 1, 37 | syl3anc 1249 | 
. 2
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ* ∧ 𝑆 ≤ 𝑅)) → (𝑃(ball‘𝐶)𝑆) = {𝑧 ∈ 𝑋 ∣ (𝑃𝐶𝑧) < 𝑆}) | 
| 39 | 32, 36, 38 | 3eqtr4d 2239 | 
1
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ* ∧ 𝑆 ≤ 𝑅)) → (𝑃(ball‘𝐷)𝑆) = (𝑃(ball‘𝐶)𝑆)) |