Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-om GIF version

Theorem bj-om 13829
Description: A set is equal to ω if and only if it is the smallest inductive set. (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-om (𝐴𝑉 → (𝐴 = ω ↔ (Ind 𝐴 ∧ ∀𝑥(Ind 𝑥𝐴𝑥))))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem bj-om
StepHypRef Expression
1 bj-omind 13826 . . . 4 Ind ω
2 bj-indeq 13821 . . . 4 (𝐴 = ω → (Ind 𝐴 ↔ Ind ω))
31, 2mpbiri 167 . . 3 (𝐴 = ω → Ind 𝐴)
4 vex 2729 . . . . . 6 𝑥 ∈ V
5 bj-omssind 13827 . . . . . 6 (𝑥 ∈ V → (Ind 𝑥 → ω ⊆ 𝑥))
64, 5ax-mp 5 . . . . 5 (Ind 𝑥 → ω ⊆ 𝑥)
7 sseq1 3165 . . . . 5 (𝐴 = ω → (𝐴𝑥 ↔ ω ⊆ 𝑥))
86, 7syl5ibr 155 . . . 4 (𝐴 = ω → (Ind 𝑥𝐴𝑥))
98alrimiv 1862 . . 3 (𝐴 = ω → ∀𝑥(Ind 𝑥𝐴𝑥))
103, 9jca 304 . 2 (𝐴 = ω → (Ind 𝐴 ∧ ∀𝑥(Ind 𝑥𝐴𝑥)))
11 bj-ssom 13828 . . . . . . 7 (∀𝑥(Ind 𝑥𝐴𝑥) ↔ 𝐴 ⊆ ω)
1211biimpi 119 . . . . . 6 (∀𝑥(Ind 𝑥𝐴𝑥) → 𝐴 ⊆ ω)
1312adantl 275 . . . . 5 ((Ind 𝐴 ∧ ∀𝑥(Ind 𝑥𝐴𝑥)) → 𝐴 ⊆ ω)
1413a1i 9 . . . 4 (𝐴𝑉 → ((Ind 𝐴 ∧ ∀𝑥(Ind 𝑥𝐴𝑥)) → 𝐴 ⊆ ω))
15 bj-omssind 13827 . . . . 5 (𝐴𝑉 → (Ind 𝐴 → ω ⊆ 𝐴))
1615adantrd 277 . . . 4 (𝐴𝑉 → ((Ind 𝐴 ∧ ∀𝑥(Ind 𝑥𝐴𝑥)) → ω ⊆ 𝐴))
1714, 16jcad 305 . . 3 (𝐴𝑉 → ((Ind 𝐴 ∧ ∀𝑥(Ind 𝑥𝐴𝑥)) → (𝐴 ⊆ ω ∧ ω ⊆ 𝐴)))
18 eqss 3157 . . 3 (𝐴 = ω ↔ (𝐴 ⊆ ω ∧ ω ⊆ 𝐴))
1917, 18syl6ibr 161 . 2 (𝐴𝑉 → ((Ind 𝐴 ∧ ∀𝑥(Ind 𝑥𝐴𝑥)) → 𝐴 = ω))
2010, 19impbid2 142 1 (𝐴𝑉 → (𝐴 = ω ↔ (Ind 𝐴 ∧ ∀𝑥(Ind 𝑥𝐴𝑥))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1341   = wceq 1343  wcel 2136  Vcvv 2726  wss 3116  ωcom 4567  Ind wind 13818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-nul 4108  ax-pr 4187  ax-un 4411  ax-bd0 13705  ax-bdor 13708  ax-bdex 13711  ax-bdeq 13712  ax-bdel 13713  ax-bdsb 13714  ax-bdsep 13776
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-sn 3582  df-pr 3583  df-uni 3790  df-int 3825  df-suc 4349  df-iom 4568  df-bdc 13733  df-bj-ind 13819
This theorem is referenced by:  bj-2inf  13830  bj-inf2vn  13866  bj-inf2vn2  13867
  Copyright terms: Public domain W3C validator