Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-om GIF version

Theorem bj-om 13471
Description: A set is equal to ω if and only if it is the smallest inductive set. (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-om (𝐴𝑉 → (𝐴 = ω ↔ (Ind 𝐴 ∧ ∀𝑥(Ind 𝑥𝐴𝑥))))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem bj-om
StepHypRef Expression
1 bj-omind 13468 . . . 4 Ind ω
2 bj-indeq 13463 . . . 4 (𝐴 = ω → (Ind 𝐴 ↔ Ind ω))
31, 2mpbiri 167 . . 3 (𝐴 = ω → Ind 𝐴)
4 vex 2715 . . . . . 6 𝑥 ∈ V
5 bj-omssind 13469 . . . . . 6 (𝑥 ∈ V → (Ind 𝑥 → ω ⊆ 𝑥))
64, 5ax-mp 5 . . . . 5 (Ind 𝑥 → ω ⊆ 𝑥)
7 sseq1 3151 . . . . 5 (𝐴 = ω → (𝐴𝑥 ↔ ω ⊆ 𝑥))
86, 7syl5ibr 155 . . . 4 (𝐴 = ω → (Ind 𝑥𝐴𝑥))
98alrimiv 1854 . . 3 (𝐴 = ω → ∀𝑥(Ind 𝑥𝐴𝑥))
103, 9jca 304 . 2 (𝐴 = ω → (Ind 𝐴 ∧ ∀𝑥(Ind 𝑥𝐴𝑥)))
11 bj-ssom 13470 . . . . . . 7 (∀𝑥(Ind 𝑥𝐴𝑥) ↔ 𝐴 ⊆ ω)
1211biimpi 119 . . . . . 6 (∀𝑥(Ind 𝑥𝐴𝑥) → 𝐴 ⊆ ω)
1312adantl 275 . . . . 5 ((Ind 𝐴 ∧ ∀𝑥(Ind 𝑥𝐴𝑥)) → 𝐴 ⊆ ω)
1413a1i 9 . . . 4 (𝐴𝑉 → ((Ind 𝐴 ∧ ∀𝑥(Ind 𝑥𝐴𝑥)) → 𝐴 ⊆ ω))
15 bj-omssind 13469 . . . . 5 (𝐴𝑉 → (Ind 𝐴 → ω ⊆ 𝐴))
1615adantrd 277 . . . 4 (𝐴𝑉 → ((Ind 𝐴 ∧ ∀𝑥(Ind 𝑥𝐴𝑥)) → ω ⊆ 𝐴))
1714, 16jcad 305 . . 3 (𝐴𝑉 → ((Ind 𝐴 ∧ ∀𝑥(Ind 𝑥𝐴𝑥)) → (𝐴 ⊆ ω ∧ ω ⊆ 𝐴)))
18 eqss 3143 . . 3 (𝐴 = ω ↔ (𝐴 ⊆ ω ∧ ω ⊆ 𝐴))
1917, 18syl6ibr 161 . 2 (𝐴𝑉 → ((Ind 𝐴 ∧ ∀𝑥(Ind 𝑥𝐴𝑥)) → 𝐴 = ω))
2010, 19impbid2 142 1 (𝐴𝑉 → (𝐴 = ω ↔ (Ind 𝐴 ∧ ∀𝑥(Ind 𝑥𝐴𝑥))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1333   = wceq 1335  wcel 2128  Vcvv 2712  wss 3102  ωcom 4547  Ind wind 13460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-nul 4090  ax-pr 4168  ax-un 4392  ax-bd0 13347  ax-bdor 13350  ax-bdex 13353  ax-bdeq 13354  ax-bdel 13355  ax-bdsb 13356  ax-bdsep 13418
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-sn 3566  df-pr 3567  df-uni 3773  df-int 3808  df-suc 4330  df-iom 4548  df-bdc 13375  df-bj-ind 13461
This theorem is referenced by:  bj-2inf  13472  bj-inf2vn  13508  bj-inf2vn2  13509
  Copyright terms: Public domain W3C validator