| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-om | GIF version | ||
| Description: A set is equal to ω if and only if it is the smallest inductive set. (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-om | ⊢ (𝐴 ∈ 𝑉 → (𝐴 = ω ↔ (Ind 𝐴 ∧ ∀𝑥(Ind 𝑥 → 𝐴 ⊆ 𝑥)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-omind 15874 | . . . 4 ⊢ Ind ω | |
| 2 | bj-indeq 15869 | . . . 4 ⊢ (𝐴 = ω → (Ind 𝐴 ↔ Ind ω)) | |
| 3 | 1, 2 | mpbiri 168 | . . 3 ⊢ (𝐴 = ω → Ind 𝐴) |
| 4 | vex 2775 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 5 | bj-omssind 15875 | . . . . . 6 ⊢ (𝑥 ∈ V → (Ind 𝑥 → ω ⊆ 𝑥)) | |
| 6 | 4, 5 | ax-mp 5 | . . . . 5 ⊢ (Ind 𝑥 → ω ⊆ 𝑥) |
| 7 | sseq1 3216 | . . . . 5 ⊢ (𝐴 = ω → (𝐴 ⊆ 𝑥 ↔ ω ⊆ 𝑥)) | |
| 8 | 6, 7 | imbitrrid 156 | . . . 4 ⊢ (𝐴 = ω → (Ind 𝑥 → 𝐴 ⊆ 𝑥)) |
| 9 | 8 | alrimiv 1897 | . . 3 ⊢ (𝐴 = ω → ∀𝑥(Ind 𝑥 → 𝐴 ⊆ 𝑥)) |
| 10 | 3, 9 | jca 306 | . 2 ⊢ (𝐴 = ω → (Ind 𝐴 ∧ ∀𝑥(Ind 𝑥 → 𝐴 ⊆ 𝑥))) |
| 11 | bj-ssom 15876 | . . . . . . 7 ⊢ (∀𝑥(Ind 𝑥 → 𝐴 ⊆ 𝑥) ↔ 𝐴 ⊆ ω) | |
| 12 | 11 | biimpi 120 | . . . . . 6 ⊢ (∀𝑥(Ind 𝑥 → 𝐴 ⊆ 𝑥) → 𝐴 ⊆ ω) |
| 13 | 12 | adantl 277 | . . . . 5 ⊢ ((Ind 𝐴 ∧ ∀𝑥(Ind 𝑥 → 𝐴 ⊆ 𝑥)) → 𝐴 ⊆ ω) |
| 14 | 13 | a1i 9 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ((Ind 𝐴 ∧ ∀𝑥(Ind 𝑥 → 𝐴 ⊆ 𝑥)) → 𝐴 ⊆ ω)) |
| 15 | bj-omssind 15875 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (Ind 𝐴 → ω ⊆ 𝐴)) | |
| 16 | 15 | adantrd 279 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ((Ind 𝐴 ∧ ∀𝑥(Ind 𝑥 → 𝐴 ⊆ 𝑥)) → ω ⊆ 𝐴)) |
| 17 | 14, 16 | jcad 307 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ((Ind 𝐴 ∧ ∀𝑥(Ind 𝑥 → 𝐴 ⊆ 𝑥)) → (𝐴 ⊆ ω ∧ ω ⊆ 𝐴))) |
| 18 | eqss 3208 | . . 3 ⊢ (𝐴 = ω ↔ (𝐴 ⊆ ω ∧ ω ⊆ 𝐴)) | |
| 19 | 17, 18 | imbitrrdi 162 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((Ind 𝐴 ∧ ∀𝑥(Ind 𝑥 → 𝐴 ⊆ 𝑥)) → 𝐴 = ω)) |
| 20 | 10, 19 | impbid2 143 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 = ω ↔ (Ind 𝐴 ∧ ∀𝑥(Ind 𝑥 → 𝐴 ⊆ 𝑥)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1371 = wceq 1373 ∈ wcel 2176 Vcvv 2772 ⊆ wss 3166 ωcom 4638 Ind wind 15866 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-nul 4170 ax-pr 4253 ax-un 4480 ax-bd0 15753 ax-bdor 15756 ax-bdex 15759 ax-bdeq 15760 ax-bdel 15761 ax-bdsb 15762 ax-bdsep 15824 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-sn 3639 df-pr 3640 df-uni 3851 df-int 3886 df-suc 4418 df-iom 4639 df-bdc 15781 df-bj-ind 15867 |
| This theorem is referenced by: bj-2inf 15878 bj-inf2vn 15914 bj-inf2vn2 15915 |
| Copyright terms: Public domain | W3C validator |