Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-om | GIF version |
Description: A set is equal to ω if and only if it is the smallest inductive set. (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-om | ⊢ (𝐴 ∈ 𝑉 → (𝐴 = ω ↔ (Ind 𝐴 ∧ ∀𝑥(Ind 𝑥 → 𝐴 ⊆ 𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-omind 13468 | . . . 4 ⊢ Ind ω | |
2 | bj-indeq 13463 | . . . 4 ⊢ (𝐴 = ω → (Ind 𝐴 ↔ Ind ω)) | |
3 | 1, 2 | mpbiri 167 | . . 3 ⊢ (𝐴 = ω → Ind 𝐴) |
4 | vex 2715 | . . . . . 6 ⊢ 𝑥 ∈ V | |
5 | bj-omssind 13469 | . . . . . 6 ⊢ (𝑥 ∈ V → (Ind 𝑥 → ω ⊆ 𝑥)) | |
6 | 4, 5 | ax-mp 5 | . . . . 5 ⊢ (Ind 𝑥 → ω ⊆ 𝑥) |
7 | sseq1 3151 | . . . . 5 ⊢ (𝐴 = ω → (𝐴 ⊆ 𝑥 ↔ ω ⊆ 𝑥)) | |
8 | 6, 7 | syl5ibr 155 | . . . 4 ⊢ (𝐴 = ω → (Ind 𝑥 → 𝐴 ⊆ 𝑥)) |
9 | 8 | alrimiv 1854 | . . 3 ⊢ (𝐴 = ω → ∀𝑥(Ind 𝑥 → 𝐴 ⊆ 𝑥)) |
10 | 3, 9 | jca 304 | . 2 ⊢ (𝐴 = ω → (Ind 𝐴 ∧ ∀𝑥(Ind 𝑥 → 𝐴 ⊆ 𝑥))) |
11 | bj-ssom 13470 | . . . . . . 7 ⊢ (∀𝑥(Ind 𝑥 → 𝐴 ⊆ 𝑥) ↔ 𝐴 ⊆ ω) | |
12 | 11 | biimpi 119 | . . . . . 6 ⊢ (∀𝑥(Ind 𝑥 → 𝐴 ⊆ 𝑥) → 𝐴 ⊆ ω) |
13 | 12 | adantl 275 | . . . . 5 ⊢ ((Ind 𝐴 ∧ ∀𝑥(Ind 𝑥 → 𝐴 ⊆ 𝑥)) → 𝐴 ⊆ ω) |
14 | 13 | a1i 9 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ((Ind 𝐴 ∧ ∀𝑥(Ind 𝑥 → 𝐴 ⊆ 𝑥)) → 𝐴 ⊆ ω)) |
15 | bj-omssind 13469 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (Ind 𝐴 → ω ⊆ 𝐴)) | |
16 | 15 | adantrd 277 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ((Ind 𝐴 ∧ ∀𝑥(Ind 𝑥 → 𝐴 ⊆ 𝑥)) → ω ⊆ 𝐴)) |
17 | 14, 16 | jcad 305 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ((Ind 𝐴 ∧ ∀𝑥(Ind 𝑥 → 𝐴 ⊆ 𝑥)) → (𝐴 ⊆ ω ∧ ω ⊆ 𝐴))) |
18 | eqss 3143 | . . 3 ⊢ (𝐴 = ω ↔ (𝐴 ⊆ ω ∧ ω ⊆ 𝐴)) | |
19 | 17, 18 | syl6ibr 161 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((Ind 𝐴 ∧ ∀𝑥(Ind 𝑥 → 𝐴 ⊆ 𝑥)) → 𝐴 = ω)) |
20 | 10, 19 | impbid2 142 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 = ω ↔ (Ind 𝐴 ∧ ∀𝑥(Ind 𝑥 → 𝐴 ⊆ 𝑥)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∀wal 1333 = wceq 1335 ∈ wcel 2128 Vcvv 2712 ⊆ wss 3102 ωcom 4547 Ind wind 13460 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-nul 4090 ax-pr 4168 ax-un 4392 ax-bd0 13347 ax-bdor 13350 ax-bdex 13353 ax-bdeq 13354 ax-bdel 13355 ax-bdsb 13356 ax-bdsep 13418 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-sn 3566 df-pr 3567 df-uni 3773 df-int 3808 df-suc 4330 df-iom 4548 df-bdc 13375 df-bj-ind 13461 |
This theorem is referenced by: bj-2inf 13472 bj-inf2vn 13508 bj-inf2vn2 13509 |
Copyright terms: Public domain | W3C validator |