Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-om GIF version

Theorem bj-om 15667
Description: A set is equal to ω if and only if it is the smallest inductive set. (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-om (𝐴𝑉 → (𝐴 = ω ↔ (Ind 𝐴 ∧ ∀𝑥(Ind 𝑥𝐴𝑥))))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem bj-om
StepHypRef Expression
1 bj-omind 15664 . . . 4 Ind ω
2 bj-indeq 15659 . . . 4 (𝐴 = ω → (Ind 𝐴 ↔ Ind ω))
31, 2mpbiri 168 . . 3 (𝐴 = ω → Ind 𝐴)
4 vex 2766 . . . . . 6 𝑥 ∈ V
5 bj-omssind 15665 . . . . . 6 (𝑥 ∈ V → (Ind 𝑥 → ω ⊆ 𝑥))
64, 5ax-mp 5 . . . . 5 (Ind 𝑥 → ω ⊆ 𝑥)
7 sseq1 3207 . . . . 5 (𝐴 = ω → (𝐴𝑥 ↔ ω ⊆ 𝑥))
86, 7imbitrrid 156 . . . 4 (𝐴 = ω → (Ind 𝑥𝐴𝑥))
98alrimiv 1888 . . 3 (𝐴 = ω → ∀𝑥(Ind 𝑥𝐴𝑥))
103, 9jca 306 . 2 (𝐴 = ω → (Ind 𝐴 ∧ ∀𝑥(Ind 𝑥𝐴𝑥)))
11 bj-ssom 15666 . . . . . . 7 (∀𝑥(Ind 𝑥𝐴𝑥) ↔ 𝐴 ⊆ ω)
1211biimpi 120 . . . . . 6 (∀𝑥(Ind 𝑥𝐴𝑥) → 𝐴 ⊆ ω)
1312adantl 277 . . . . 5 ((Ind 𝐴 ∧ ∀𝑥(Ind 𝑥𝐴𝑥)) → 𝐴 ⊆ ω)
1413a1i 9 . . . 4 (𝐴𝑉 → ((Ind 𝐴 ∧ ∀𝑥(Ind 𝑥𝐴𝑥)) → 𝐴 ⊆ ω))
15 bj-omssind 15665 . . . . 5 (𝐴𝑉 → (Ind 𝐴 → ω ⊆ 𝐴))
1615adantrd 279 . . . 4 (𝐴𝑉 → ((Ind 𝐴 ∧ ∀𝑥(Ind 𝑥𝐴𝑥)) → ω ⊆ 𝐴))
1714, 16jcad 307 . . 3 (𝐴𝑉 → ((Ind 𝐴 ∧ ∀𝑥(Ind 𝑥𝐴𝑥)) → (𝐴 ⊆ ω ∧ ω ⊆ 𝐴)))
18 eqss 3199 . . 3 (𝐴 = ω ↔ (𝐴 ⊆ ω ∧ ω ⊆ 𝐴))
1917, 18imbitrrdi 162 . 2 (𝐴𝑉 → ((Ind 𝐴 ∧ ∀𝑥(Ind 𝑥𝐴𝑥)) → 𝐴 = ω))
2010, 19impbid2 143 1 (𝐴𝑉 → (𝐴 = ω ↔ (Ind 𝐴 ∧ ∀𝑥(Ind 𝑥𝐴𝑥))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1362   = wceq 1364  wcel 2167  Vcvv 2763  wss 3157  ωcom 4627  Ind wind 15656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-nul 4160  ax-pr 4243  ax-un 4469  ax-bd0 15543  ax-bdor 15546  ax-bdex 15549  ax-bdeq 15550  ax-bdel 15551  ax-bdsb 15552  ax-bdsep 15614
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-sn 3629  df-pr 3630  df-uni 3841  df-int 3876  df-suc 4407  df-iom 4628  df-bdc 15571  df-bj-ind 15657
This theorem is referenced by:  bj-2inf  15668  bj-inf2vn  15704  bj-inf2vn2  15705
  Copyright terms: Public domain W3C validator