![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-2inf | GIF version |
Description: Two formulations of the axiom of infinity (see ax-infvn 14732 and bj-omex 14733) . (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-2inf | ⊢ (ω ∈ V ↔ ∃𝑥(Ind 𝑥 ∧ ∀𝑦(Ind 𝑦 → 𝑥 ⊆ 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2177 | . . . 4 ⊢ ω = ω | |
2 | bj-om 14728 | . . . 4 ⊢ (ω ∈ V → (ω = ω ↔ (Ind ω ∧ ∀𝑦(Ind 𝑦 → ω ⊆ 𝑦)))) | |
3 | 1, 2 | mpbii 148 | . . 3 ⊢ (ω ∈ V → (Ind ω ∧ ∀𝑦(Ind 𝑦 → ω ⊆ 𝑦))) |
4 | bj-indeq 14720 | . . . . 5 ⊢ (𝑥 = ω → (Ind 𝑥 ↔ Ind ω)) | |
5 | sseq1 3180 | . . . . . . 7 ⊢ (𝑥 = ω → (𝑥 ⊆ 𝑦 ↔ ω ⊆ 𝑦)) | |
6 | 5 | imbi2d 230 | . . . . . 6 ⊢ (𝑥 = ω → ((Ind 𝑦 → 𝑥 ⊆ 𝑦) ↔ (Ind 𝑦 → ω ⊆ 𝑦))) |
7 | 6 | albidv 1824 | . . . . 5 ⊢ (𝑥 = ω → (∀𝑦(Ind 𝑦 → 𝑥 ⊆ 𝑦) ↔ ∀𝑦(Ind 𝑦 → ω ⊆ 𝑦))) |
8 | 4, 7 | anbi12d 473 | . . . 4 ⊢ (𝑥 = ω → ((Ind 𝑥 ∧ ∀𝑦(Ind 𝑦 → 𝑥 ⊆ 𝑦)) ↔ (Ind ω ∧ ∀𝑦(Ind 𝑦 → ω ⊆ 𝑦)))) |
9 | 8 | spcegv 2827 | . . 3 ⊢ (ω ∈ V → ((Ind ω ∧ ∀𝑦(Ind 𝑦 → ω ⊆ 𝑦)) → ∃𝑥(Ind 𝑥 ∧ ∀𝑦(Ind 𝑦 → 𝑥 ⊆ 𝑦)))) |
10 | 3, 9 | mpd 13 | . 2 ⊢ (ω ∈ V → ∃𝑥(Ind 𝑥 ∧ ∀𝑦(Ind 𝑦 → 𝑥 ⊆ 𝑦))) |
11 | vex 2742 | . . . . . 6 ⊢ 𝑥 ∈ V | |
12 | bj-om 14728 | . . . . . 6 ⊢ (𝑥 ∈ V → (𝑥 = ω ↔ (Ind 𝑥 ∧ ∀𝑦(Ind 𝑦 → 𝑥 ⊆ 𝑦)))) | |
13 | 11, 12 | ax-mp 5 | . . . . 5 ⊢ (𝑥 = ω ↔ (Ind 𝑥 ∧ ∀𝑦(Ind 𝑦 → 𝑥 ⊆ 𝑦))) |
14 | 13 | biimpri 133 | . . . 4 ⊢ ((Ind 𝑥 ∧ ∀𝑦(Ind 𝑦 → 𝑥 ⊆ 𝑦)) → 𝑥 = ω) |
15 | 14 | eximi 1600 | . . 3 ⊢ (∃𝑥(Ind 𝑥 ∧ ∀𝑦(Ind 𝑦 → 𝑥 ⊆ 𝑦)) → ∃𝑥 𝑥 = ω) |
16 | isset 2745 | . . 3 ⊢ (ω ∈ V ↔ ∃𝑥 𝑥 = ω) | |
17 | 15, 16 | sylibr 134 | . 2 ⊢ (∃𝑥(Ind 𝑥 ∧ ∀𝑦(Ind 𝑦 → 𝑥 ⊆ 𝑦)) → ω ∈ V) |
18 | 10, 17 | impbii 126 | 1 ⊢ (ω ∈ V ↔ ∃𝑥(Ind 𝑥 ∧ ∀𝑦(Ind 𝑦 → 𝑥 ⊆ 𝑦))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1351 = wceq 1353 ∃wex 1492 ∈ wcel 2148 Vcvv 2739 ⊆ wss 3131 ωcom 4591 Ind wind 14717 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-nul 4131 ax-pr 4211 ax-un 4435 ax-bd0 14604 ax-bdor 14607 ax-bdex 14610 ax-bdeq 14611 ax-bdel 14612 ax-bdsb 14613 ax-bdsep 14675 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-sn 3600 df-pr 3601 df-uni 3812 df-int 3847 df-suc 4373 df-iom 4592 df-bdc 14632 df-bj-ind 14718 |
This theorem is referenced by: bj-omex 14733 |
Copyright terms: Public domain | W3C validator |