Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-2inf | GIF version |
Description: Two formulations of the axiom of infinity (see ax-infvn 13823 and bj-omex 13824) . (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-2inf | ⊢ (ω ∈ V ↔ ∃𝑥(Ind 𝑥 ∧ ∀𝑦(Ind 𝑦 → 𝑥 ⊆ 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2165 | . . . 4 ⊢ ω = ω | |
2 | bj-om 13819 | . . . 4 ⊢ (ω ∈ V → (ω = ω ↔ (Ind ω ∧ ∀𝑦(Ind 𝑦 → ω ⊆ 𝑦)))) | |
3 | 1, 2 | mpbii 147 | . . 3 ⊢ (ω ∈ V → (Ind ω ∧ ∀𝑦(Ind 𝑦 → ω ⊆ 𝑦))) |
4 | bj-indeq 13811 | . . . . 5 ⊢ (𝑥 = ω → (Ind 𝑥 ↔ Ind ω)) | |
5 | sseq1 3165 | . . . . . . 7 ⊢ (𝑥 = ω → (𝑥 ⊆ 𝑦 ↔ ω ⊆ 𝑦)) | |
6 | 5 | imbi2d 229 | . . . . . 6 ⊢ (𝑥 = ω → ((Ind 𝑦 → 𝑥 ⊆ 𝑦) ↔ (Ind 𝑦 → ω ⊆ 𝑦))) |
7 | 6 | albidv 1812 | . . . . 5 ⊢ (𝑥 = ω → (∀𝑦(Ind 𝑦 → 𝑥 ⊆ 𝑦) ↔ ∀𝑦(Ind 𝑦 → ω ⊆ 𝑦))) |
8 | 4, 7 | anbi12d 465 | . . . 4 ⊢ (𝑥 = ω → ((Ind 𝑥 ∧ ∀𝑦(Ind 𝑦 → 𝑥 ⊆ 𝑦)) ↔ (Ind ω ∧ ∀𝑦(Ind 𝑦 → ω ⊆ 𝑦)))) |
9 | 8 | spcegv 2814 | . . 3 ⊢ (ω ∈ V → ((Ind ω ∧ ∀𝑦(Ind 𝑦 → ω ⊆ 𝑦)) → ∃𝑥(Ind 𝑥 ∧ ∀𝑦(Ind 𝑦 → 𝑥 ⊆ 𝑦)))) |
10 | 3, 9 | mpd 13 | . 2 ⊢ (ω ∈ V → ∃𝑥(Ind 𝑥 ∧ ∀𝑦(Ind 𝑦 → 𝑥 ⊆ 𝑦))) |
11 | vex 2729 | . . . . . 6 ⊢ 𝑥 ∈ V | |
12 | bj-om 13819 | . . . . . 6 ⊢ (𝑥 ∈ V → (𝑥 = ω ↔ (Ind 𝑥 ∧ ∀𝑦(Ind 𝑦 → 𝑥 ⊆ 𝑦)))) | |
13 | 11, 12 | ax-mp 5 | . . . . 5 ⊢ (𝑥 = ω ↔ (Ind 𝑥 ∧ ∀𝑦(Ind 𝑦 → 𝑥 ⊆ 𝑦))) |
14 | 13 | biimpri 132 | . . . 4 ⊢ ((Ind 𝑥 ∧ ∀𝑦(Ind 𝑦 → 𝑥 ⊆ 𝑦)) → 𝑥 = ω) |
15 | 14 | eximi 1588 | . . 3 ⊢ (∃𝑥(Ind 𝑥 ∧ ∀𝑦(Ind 𝑦 → 𝑥 ⊆ 𝑦)) → ∃𝑥 𝑥 = ω) |
16 | isset 2732 | . . 3 ⊢ (ω ∈ V ↔ ∃𝑥 𝑥 = ω) | |
17 | 15, 16 | sylibr 133 | . 2 ⊢ (∃𝑥(Ind 𝑥 ∧ ∀𝑦(Ind 𝑦 → 𝑥 ⊆ 𝑦)) → ω ∈ V) |
18 | 10, 17 | impbii 125 | 1 ⊢ (ω ∈ V ↔ ∃𝑥(Ind 𝑥 ∧ ∀𝑦(Ind 𝑦 → 𝑥 ⊆ 𝑦))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∀wal 1341 = wceq 1343 ∃wex 1480 ∈ wcel 2136 Vcvv 2726 ⊆ wss 3116 ωcom 4567 Ind wind 13808 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-nul 4108 ax-pr 4187 ax-un 4411 ax-bd0 13695 ax-bdor 13698 ax-bdex 13701 ax-bdeq 13702 ax-bdel 13703 ax-bdsb 13704 ax-bdsep 13766 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-sn 3582 df-pr 3583 df-uni 3790 df-int 3825 df-suc 4349 df-iom 4568 df-bdc 13723 df-bj-ind 13809 |
This theorem is referenced by: bj-omex 13824 |
Copyright terms: Public domain | W3C validator |