Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-2inf GIF version

Theorem bj-2inf 13307
Description: Two formulations of the axiom of infinity (see ax-infvn 13310 and bj-omex 13311) . (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-2inf (ω ∈ V ↔ ∃𝑥(Ind 𝑥 ∧ ∀𝑦(Ind 𝑦𝑥𝑦)))
Distinct variable group:   𝑥,𝑦

Proof of Theorem bj-2inf
StepHypRef Expression
1 eqid 2140 . . . 4 ω = ω
2 bj-om 13306 . . . 4 (ω ∈ V → (ω = ω ↔ (Ind ω ∧ ∀𝑦(Ind 𝑦 → ω ⊆ 𝑦))))
31, 2mpbii 147 . . 3 (ω ∈ V → (Ind ω ∧ ∀𝑦(Ind 𝑦 → ω ⊆ 𝑦)))
4 bj-indeq 13298 . . . . 5 (𝑥 = ω → (Ind 𝑥 ↔ Ind ω))
5 sseq1 3125 . . . . . . 7 (𝑥 = ω → (𝑥𝑦 ↔ ω ⊆ 𝑦))
65imbi2d 229 . . . . . 6 (𝑥 = ω → ((Ind 𝑦𝑥𝑦) ↔ (Ind 𝑦 → ω ⊆ 𝑦)))
76albidv 1797 . . . . 5 (𝑥 = ω → (∀𝑦(Ind 𝑦𝑥𝑦) ↔ ∀𝑦(Ind 𝑦 → ω ⊆ 𝑦)))
84, 7anbi12d 465 . . . 4 (𝑥 = ω → ((Ind 𝑥 ∧ ∀𝑦(Ind 𝑦𝑥𝑦)) ↔ (Ind ω ∧ ∀𝑦(Ind 𝑦 → ω ⊆ 𝑦))))
98spcegv 2777 . . 3 (ω ∈ V → ((Ind ω ∧ ∀𝑦(Ind 𝑦 → ω ⊆ 𝑦)) → ∃𝑥(Ind 𝑥 ∧ ∀𝑦(Ind 𝑦𝑥𝑦))))
103, 9mpd 13 . 2 (ω ∈ V → ∃𝑥(Ind 𝑥 ∧ ∀𝑦(Ind 𝑦𝑥𝑦)))
11 vex 2692 . . . . . 6 𝑥 ∈ V
12 bj-om 13306 . . . . . 6 (𝑥 ∈ V → (𝑥 = ω ↔ (Ind 𝑥 ∧ ∀𝑦(Ind 𝑦𝑥𝑦))))
1311, 12ax-mp 5 . . . . 5 (𝑥 = ω ↔ (Ind 𝑥 ∧ ∀𝑦(Ind 𝑦𝑥𝑦)))
1413biimpri 132 . . . 4 ((Ind 𝑥 ∧ ∀𝑦(Ind 𝑦𝑥𝑦)) → 𝑥 = ω)
1514eximi 1580 . . 3 (∃𝑥(Ind 𝑥 ∧ ∀𝑦(Ind 𝑦𝑥𝑦)) → ∃𝑥 𝑥 = ω)
16 isset 2695 . . 3 (ω ∈ V ↔ ∃𝑥 𝑥 = ω)
1715, 16sylibr 133 . 2 (∃𝑥(Ind 𝑥 ∧ ∀𝑦(Ind 𝑦𝑥𝑦)) → ω ∈ V)
1810, 17impbii 125 1 (ω ∈ V ↔ ∃𝑥(Ind 𝑥 ∧ ∀𝑦(Ind 𝑦𝑥𝑦)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1330   = wceq 1332  wex 1469  wcel 1481  Vcvv 2689  wss 3076  ωcom 4512  Ind wind 13295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-nul 4062  ax-pr 4139  ax-un 4363  ax-bd0 13182  ax-bdor 13185  ax-bdex 13188  ax-bdeq 13189  ax-bdel 13190  ax-bdsb 13191  ax-bdsep 13253
This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-sn 3538  df-pr 3539  df-uni 3745  df-int 3780  df-suc 4301  df-iom 4513  df-bdc 13210  df-bj-ind 13296
This theorem is referenced by:  bj-omex  13311
  Copyright terms: Public domain W3C validator