Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-2inf GIF version

Theorem bj-2inf 16231
Description: Two formulations of the axiom of infinity (see ax-infvn 16234 and bj-omex 16235) . (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-2inf (ω ∈ V ↔ ∃𝑥(Ind 𝑥 ∧ ∀𝑦(Ind 𝑦𝑥𝑦)))
Distinct variable group:   𝑥,𝑦

Proof of Theorem bj-2inf
StepHypRef Expression
1 eqid 2229 . . . 4 ω = ω
2 bj-om 16230 . . . 4 (ω ∈ V → (ω = ω ↔ (Ind ω ∧ ∀𝑦(Ind 𝑦 → ω ⊆ 𝑦))))
31, 2mpbii 148 . . 3 (ω ∈ V → (Ind ω ∧ ∀𝑦(Ind 𝑦 → ω ⊆ 𝑦)))
4 bj-indeq 16222 . . . . 5 (𝑥 = ω → (Ind 𝑥 ↔ Ind ω))
5 sseq1 3247 . . . . . . 7 (𝑥 = ω → (𝑥𝑦 ↔ ω ⊆ 𝑦))
65imbi2d 230 . . . . . 6 (𝑥 = ω → ((Ind 𝑦𝑥𝑦) ↔ (Ind 𝑦 → ω ⊆ 𝑦)))
76albidv 1870 . . . . 5 (𝑥 = ω → (∀𝑦(Ind 𝑦𝑥𝑦) ↔ ∀𝑦(Ind 𝑦 → ω ⊆ 𝑦)))
84, 7anbi12d 473 . . . 4 (𝑥 = ω → ((Ind 𝑥 ∧ ∀𝑦(Ind 𝑦𝑥𝑦)) ↔ (Ind ω ∧ ∀𝑦(Ind 𝑦 → ω ⊆ 𝑦))))
98spcegv 2891 . . 3 (ω ∈ V → ((Ind ω ∧ ∀𝑦(Ind 𝑦 → ω ⊆ 𝑦)) → ∃𝑥(Ind 𝑥 ∧ ∀𝑦(Ind 𝑦𝑥𝑦))))
103, 9mpd 13 . 2 (ω ∈ V → ∃𝑥(Ind 𝑥 ∧ ∀𝑦(Ind 𝑦𝑥𝑦)))
11 vex 2802 . . . . . 6 𝑥 ∈ V
12 bj-om 16230 . . . . . 6 (𝑥 ∈ V → (𝑥 = ω ↔ (Ind 𝑥 ∧ ∀𝑦(Ind 𝑦𝑥𝑦))))
1311, 12ax-mp 5 . . . . 5 (𝑥 = ω ↔ (Ind 𝑥 ∧ ∀𝑦(Ind 𝑦𝑥𝑦)))
1413biimpri 133 . . . 4 ((Ind 𝑥 ∧ ∀𝑦(Ind 𝑦𝑥𝑦)) → 𝑥 = ω)
1514eximi 1646 . . 3 (∃𝑥(Ind 𝑥 ∧ ∀𝑦(Ind 𝑦𝑥𝑦)) → ∃𝑥 𝑥 = ω)
16 isset 2806 . . 3 (ω ∈ V ↔ ∃𝑥 𝑥 = ω)
1715, 16sylibr 134 . 2 (∃𝑥(Ind 𝑥 ∧ ∀𝑦(Ind 𝑦𝑥𝑦)) → ω ∈ V)
1810, 17impbii 126 1 (ω ∈ V ↔ ∃𝑥(Ind 𝑥 ∧ ∀𝑦(Ind 𝑦𝑥𝑦)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1393   = wceq 1395  wex 1538  wcel 2200  Vcvv 2799  wss 3197  ωcom 4679  Ind wind 16219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-nul 4209  ax-pr 4292  ax-un 4521  ax-bd0 16106  ax-bdor 16109  ax-bdex 16112  ax-bdeq 16113  ax-bdel 16114  ax-bdsb 16115  ax-bdsep 16177
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-sn 3672  df-pr 3673  df-uni 3888  df-int 3923  df-suc 4459  df-iom 4680  df-bdc 16134  df-bj-ind 16220
This theorem is referenced by:  bj-omex  16235
  Copyright terms: Public domain W3C validator