![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-2inf | GIF version |
Description: Two formulations of the axiom of infinity (see ax-infvn 15433 and bj-omex 15434) . (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-2inf | ⊢ (ω ∈ V ↔ ∃𝑥(Ind 𝑥 ∧ ∀𝑦(Ind 𝑦 → 𝑥 ⊆ 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2193 | . . . 4 ⊢ ω = ω | |
2 | bj-om 15429 | . . . 4 ⊢ (ω ∈ V → (ω = ω ↔ (Ind ω ∧ ∀𝑦(Ind 𝑦 → ω ⊆ 𝑦)))) | |
3 | 1, 2 | mpbii 148 | . . 3 ⊢ (ω ∈ V → (Ind ω ∧ ∀𝑦(Ind 𝑦 → ω ⊆ 𝑦))) |
4 | bj-indeq 15421 | . . . . 5 ⊢ (𝑥 = ω → (Ind 𝑥 ↔ Ind ω)) | |
5 | sseq1 3202 | . . . . . . 7 ⊢ (𝑥 = ω → (𝑥 ⊆ 𝑦 ↔ ω ⊆ 𝑦)) | |
6 | 5 | imbi2d 230 | . . . . . 6 ⊢ (𝑥 = ω → ((Ind 𝑦 → 𝑥 ⊆ 𝑦) ↔ (Ind 𝑦 → ω ⊆ 𝑦))) |
7 | 6 | albidv 1835 | . . . . 5 ⊢ (𝑥 = ω → (∀𝑦(Ind 𝑦 → 𝑥 ⊆ 𝑦) ↔ ∀𝑦(Ind 𝑦 → ω ⊆ 𝑦))) |
8 | 4, 7 | anbi12d 473 | . . . 4 ⊢ (𝑥 = ω → ((Ind 𝑥 ∧ ∀𝑦(Ind 𝑦 → 𝑥 ⊆ 𝑦)) ↔ (Ind ω ∧ ∀𝑦(Ind 𝑦 → ω ⊆ 𝑦)))) |
9 | 8 | spcegv 2848 | . . 3 ⊢ (ω ∈ V → ((Ind ω ∧ ∀𝑦(Ind 𝑦 → ω ⊆ 𝑦)) → ∃𝑥(Ind 𝑥 ∧ ∀𝑦(Ind 𝑦 → 𝑥 ⊆ 𝑦)))) |
10 | 3, 9 | mpd 13 | . 2 ⊢ (ω ∈ V → ∃𝑥(Ind 𝑥 ∧ ∀𝑦(Ind 𝑦 → 𝑥 ⊆ 𝑦))) |
11 | vex 2763 | . . . . . 6 ⊢ 𝑥 ∈ V | |
12 | bj-om 15429 | . . . . . 6 ⊢ (𝑥 ∈ V → (𝑥 = ω ↔ (Ind 𝑥 ∧ ∀𝑦(Ind 𝑦 → 𝑥 ⊆ 𝑦)))) | |
13 | 11, 12 | ax-mp 5 | . . . . 5 ⊢ (𝑥 = ω ↔ (Ind 𝑥 ∧ ∀𝑦(Ind 𝑦 → 𝑥 ⊆ 𝑦))) |
14 | 13 | biimpri 133 | . . . 4 ⊢ ((Ind 𝑥 ∧ ∀𝑦(Ind 𝑦 → 𝑥 ⊆ 𝑦)) → 𝑥 = ω) |
15 | 14 | eximi 1611 | . . 3 ⊢ (∃𝑥(Ind 𝑥 ∧ ∀𝑦(Ind 𝑦 → 𝑥 ⊆ 𝑦)) → ∃𝑥 𝑥 = ω) |
16 | isset 2766 | . . 3 ⊢ (ω ∈ V ↔ ∃𝑥 𝑥 = ω) | |
17 | 15, 16 | sylibr 134 | . 2 ⊢ (∃𝑥(Ind 𝑥 ∧ ∀𝑦(Ind 𝑦 → 𝑥 ⊆ 𝑦)) → ω ∈ V) |
18 | 10, 17 | impbii 126 | 1 ⊢ (ω ∈ V ↔ ∃𝑥(Ind 𝑥 ∧ ∀𝑦(Ind 𝑦 → 𝑥 ⊆ 𝑦))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1362 = wceq 1364 ∃wex 1503 ∈ wcel 2164 Vcvv 2760 ⊆ wss 3153 ωcom 4622 Ind wind 15418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-nul 4155 ax-pr 4238 ax-un 4464 ax-bd0 15305 ax-bdor 15308 ax-bdex 15311 ax-bdeq 15312 ax-bdel 15313 ax-bdsb 15314 ax-bdsep 15376 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-sn 3624 df-pr 3625 df-uni 3836 df-int 3871 df-suc 4402 df-iom 4623 df-bdc 15333 df-bj-ind 15419 |
This theorem is referenced by: bj-omex 15434 |
Copyright terms: Public domain | W3C validator |