| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-2inf | GIF version | ||
| Description: Two formulations of the axiom of infinity (see ax-infvn 16011 and bj-omex 16012) . (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-2inf | ⊢ (ω ∈ V ↔ ∃𝑥(Ind 𝑥 ∧ ∀𝑦(Ind 𝑦 → 𝑥 ⊆ 𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2206 | . . . 4 ⊢ ω = ω | |
| 2 | bj-om 16007 | . . . 4 ⊢ (ω ∈ V → (ω = ω ↔ (Ind ω ∧ ∀𝑦(Ind 𝑦 → ω ⊆ 𝑦)))) | |
| 3 | 1, 2 | mpbii 148 | . . 3 ⊢ (ω ∈ V → (Ind ω ∧ ∀𝑦(Ind 𝑦 → ω ⊆ 𝑦))) |
| 4 | bj-indeq 15999 | . . . . 5 ⊢ (𝑥 = ω → (Ind 𝑥 ↔ Ind ω)) | |
| 5 | sseq1 3220 | . . . . . . 7 ⊢ (𝑥 = ω → (𝑥 ⊆ 𝑦 ↔ ω ⊆ 𝑦)) | |
| 6 | 5 | imbi2d 230 | . . . . . 6 ⊢ (𝑥 = ω → ((Ind 𝑦 → 𝑥 ⊆ 𝑦) ↔ (Ind 𝑦 → ω ⊆ 𝑦))) |
| 7 | 6 | albidv 1848 | . . . . 5 ⊢ (𝑥 = ω → (∀𝑦(Ind 𝑦 → 𝑥 ⊆ 𝑦) ↔ ∀𝑦(Ind 𝑦 → ω ⊆ 𝑦))) |
| 8 | 4, 7 | anbi12d 473 | . . . 4 ⊢ (𝑥 = ω → ((Ind 𝑥 ∧ ∀𝑦(Ind 𝑦 → 𝑥 ⊆ 𝑦)) ↔ (Ind ω ∧ ∀𝑦(Ind 𝑦 → ω ⊆ 𝑦)))) |
| 9 | 8 | spcegv 2865 | . . 3 ⊢ (ω ∈ V → ((Ind ω ∧ ∀𝑦(Ind 𝑦 → ω ⊆ 𝑦)) → ∃𝑥(Ind 𝑥 ∧ ∀𝑦(Ind 𝑦 → 𝑥 ⊆ 𝑦)))) |
| 10 | 3, 9 | mpd 13 | . 2 ⊢ (ω ∈ V → ∃𝑥(Ind 𝑥 ∧ ∀𝑦(Ind 𝑦 → 𝑥 ⊆ 𝑦))) |
| 11 | vex 2776 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 12 | bj-om 16007 | . . . . . 6 ⊢ (𝑥 ∈ V → (𝑥 = ω ↔ (Ind 𝑥 ∧ ∀𝑦(Ind 𝑦 → 𝑥 ⊆ 𝑦)))) | |
| 13 | 11, 12 | ax-mp 5 | . . . . 5 ⊢ (𝑥 = ω ↔ (Ind 𝑥 ∧ ∀𝑦(Ind 𝑦 → 𝑥 ⊆ 𝑦))) |
| 14 | 13 | biimpri 133 | . . . 4 ⊢ ((Ind 𝑥 ∧ ∀𝑦(Ind 𝑦 → 𝑥 ⊆ 𝑦)) → 𝑥 = ω) |
| 15 | 14 | eximi 1624 | . . 3 ⊢ (∃𝑥(Ind 𝑥 ∧ ∀𝑦(Ind 𝑦 → 𝑥 ⊆ 𝑦)) → ∃𝑥 𝑥 = ω) |
| 16 | isset 2780 | . . 3 ⊢ (ω ∈ V ↔ ∃𝑥 𝑥 = ω) | |
| 17 | 15, 16 | sylibr 134 | . 2 ⊢ (∃𝑥(Ind 𝑥 ∧ ∀𝑦(Ind 𝑦 → 𝑥 ⊆ 𝑦)) → ω ∈ V) |
| 18 | 10, 17 | impbii 126 | 1 ⊢ (ω ∈ V ↔ ∃𝑥(Ind 𝑥 ∧ ∀𝑦(Ind 𝑦 → 𝑥 ⊆ 𝑦))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1371 = wceq 1373 ∃wex 1516 ∈ wcel 2177 Vcvv 2773 ⊆ wss 3170 ωcom 4645 Ind wind 15996 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-nul 4177 ax-pr 4260 ax-un 4487 ax-bd0 15883 ax-bdor 15886 ax-bdex 15889 ax-bdeq 15890 ax-bdel 15891 ax-bdsb 15892 ax-bdsep 15954 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-sn 3643 df-pr 3644 df-uni 3856 df-int 3891 df-suc 4425 df-iom 4646 df-bdc 15911 df-bj-ind 15997 |
| This theorem is referenced by: bj-omex 16012 |
| Copyright terms: Public domain | W3C validator |