Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-peano2 GIF version

Theorem bj-peano2 13781
Description: Constructive proof of peano2 4571. Temporary note: another possibility is to simply replace sucexg 4474 with bj-sucexg 13764 in the proof of peano2 4571. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-peano2 (𝐴 ∈ ω → suc 𝐴 ∈ ω)

Proof of Theorem bj-peano2
StepHypRef Expression
1 bj-omind 13776 . 2 Ind ω
2 bj-indsuc 13770 . 2 (Ind ω → (𝐴 ∈ ω → suc 𝐴 ∈ ω))
31, 2ax-mp 5 1 (𝐴 ∈ ω → suc 𝐴 ∈ ω)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2136  suc csuc 4342  ωcom 4566  Ind wind 13768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-nul 4107  ax-pr 4186  ax-un 4410  ax-bd0 13655  ax-bdor 13658  ax-bdex 13661  ax-bdeq 13662  ax-bdel 13663  ax-bdsb 13664  ax-bdsep 13726
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ral 2448  df-rex 2449  df-rab 2452  df-v 2727  df-dif 3117  df-un 3119  df-nul 3409  df-sn 3581  df-pr 3582  df-uni 3789  df-int 3824  df-suc 4348  df-iom 4567  df-bdc 13683  df-bj-ind 13769
This theorem is referenced by:  bj-nn0suc  13806  bj-nn0sucALT  13820
  Copyright terms: Public domain W3C validator