Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-peano2 | GIF version |
Description: Constructive proof of peano2 4571. Temporary note: another possibility is to simply replace sucexg 4474 with bj-sucexg 13764 in the proof of peano2 4571. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-peano2 | ⊢ (𝐴 ∈ ω → suc 𝐴 ∈ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-omind 13776 | . 2 ⊢ Ind ω | |
2 | bj-indsuc 13770 | . 2 ⊢ (Ind ω → (𝐴 ∈ ω → suc 𝐴 ∈ ω)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ ω → suc 𝐴 ∈ ω) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 suc csuc 4342 ωcom 4566 Ind wind 13768 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-nul 4107 ax-pr 4186 ax-un 4410 ax-bd0 13655 ax-bdor 13658 ax-bdex 13661 ax-bdeq 13662 ax-bdel 13663 ax-bdsb 13664 ax-bdsep 13726 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ral 2448 df-rex 2449 df-rab 2452 df-v 2727 df-dif 3117 df-un 3119 df-nul 3409 df-sn 3581 df-pr 3582 df-uni 3789 df-int 3824 df-suc 4348 df-iom 4567 df-bdc 13683 df-bj-ind 13769 |
This theorem is referenced by: bj-nn0suc 13806 bj-nn0sucALT 13820 |
Copyright terms: Public domain | W3C validator |